pintu2/public/plugins/uplot/uPlot.esm.js
2024-02-27 22:53:57 +07:00

5211 lines
118 KiB
JavaScript

/**
* Copyright (c) 2021, Leon Sorokin
* All rights reserved. (MIT Licensed)
*
* uPlot.js (μPlot)
* A small, fast chart for time series, lines, areas, ohlc & bars
* https://github.com/leeoniya/uPlot (v1.6.18)
*/
const FEAT_TIME = true;
// binary search for index of closest value
function closestIdx(num, arr, lo, hi) {
let mid;
lo = lo || 0;
hi = hi || arr.length - 1;
let bitwise = hi <= 2147483647;
while (hi - lo > 1) {
mid = bitwise ? (lo + hi) >> 1 : floor((lo + hi) / 2);
if (arr[mid] < num)
lo = mid;
else
hi = mid;
}
if (num - arr[lo] <= arr[hi] - num)
return lo;
return hi;
}
function nonNullIdx(data, _i0, _i1, dir) {
for (let i = dir == 1 ? _i0 : _i1; i >= _i0 && i <= _i1; i += dir) {
if (data[i] != null)
return i;
}
return -1;
}
function getMinMax(data, _i0, _i1, sorted) {
// console.log("getMinMax()");
let _min = inf;
let _max = -inf;
if (sorted == 1) {
_min = data[_i0];
_max = data[_i1];
}
else if (sorted == -1) {
_min = data[_i1];
_max = data[_i0];
}
else {
for (let i = _i0; i <= _i1; i++) {
if (data[i] != null) {
_min = min(_min, data[i]);
_max = max(_max, data[i]);
}
}
}
return [_min, _max];
}
function getMinMaxLog(data, _i0, _i1) {
// console.log("getMinMax()");
let _min = inf;
let _max = -inf;
for (let i = _i0; i <= _i1; i++) {
if (data[i] > 0) {
_min = min(_min, data[i]);
_max = max(_max, data[i]);
}
}
return [
_min == inf ? 1 : _min,
_max == -inf ? 10 : _max,
];
}
const _fixedTuple = [0, 0];
function fixIncr(minIncr, maxIncr, minExp, maxExp) {
_fixedTuple[0] = minExp < 0 ? roundDec(minIncr, -minExp) : minIncr;
_fixedTuple[1] = maxExp < 0 ? roundDec(maxIncr, -maxExp) : maxIncr;
return _fixedTuple;
}
function rangeLog(min, max, base, fullMags) {
let minSign = sign(min);
let logFn = base == 10 ? log10 : log2;
if (min == max) {
if (minSign == -1) {
min *= base;
max /= base;
}
else {
min /= base;
max *= base;
}
}
let minExp, maxExp, minMaxIncrs;
if (fullMags) {
minExp = floor(logFn(min));
maxExp = ceil(logFn(max));
minMaxIncrs = fixIncr(pow(base, minExp), pow(base, maxExp), minExp, maxExp);
min = minMaxIncrs[0];
max = minMaxIncrs[1];
}
else {
minExp = floor(logFn(abs(min)));
maxExp = floor(logFn(abs(max)));
minMaxIncrs = fixIncr(pow(base, minExp), pow(base, maxExp), minExp, maxExp);
min = incrRoundDn(min, minMaxIncrs[0]);
max = incrRoundUp(max, minMaxIncrs[1]);
}
return [min, max];
}
function rangeAsinh(min, max, base, fullMags) {
let minMax = rangeLog(min, max, base, fullMags);
if (min == 0)
minMax[0] = 0;
if (max == 0)
minMax[1] = 0;
return minMax;
}
const rangePad = 0.1;
const autoRangePart = {
mode: 3,
pad: rangePad,
};
const _eqRangePart = {
pad: 0,
soft: null,
mode: 0,
};
const _eqRange = {
min: _eqRangePart,
max: _eqRangePart,
};
// this ensures that non-temporal/numeric y-axes get multiple-snapped padding added above/below
// TODO: also account for incrs when snapping to ensure top of axis gets a tick & value
function rangeNum(_min, _max, mult, extra) {
if (isObj(mult))
return _rangeNum(_min, _max, mult);
_eqRangePart.pad = mult;
_eqRangePart.soft = extra ? 0 : null;
_eqRangePart.mode = extra ? 3 : 0;
return _rangeNum(_min, _max, _eqRange);
}
// nullish coalesce
function ifNull(lh, rh) {
return lh == null ? rh : lh;
}
// checks if given index range in an array contains a non-null value
// aka a range-bounded Array.some()
function hasData(data, idx0, idx1) {
idx0 = ifNull(idx0, 0);
idx1 = ifNull(idx1, data.length - 1);
while (idx0 <= idx1) {
if (data[idx0] != null)
return true;
idx0++;
}
return false;
}
function _rangeNum(_min, _max, cfg) {
let cmin = cfg.min;
let cmax = cfg.max;
let padMin = ifNull(cmin.pad, 0);
let padMax = ifNull(cmax.pad, 0);
let hardMin = ifNull(cmin.hard, -inf);
let hardMax = ifNull(cmax.hard, inf);
let softMin = ifNull(cmin.soft, inf);
let softMax = ifNull(cmax.soft, -inf);
let softMinMode = ifNull(cmin.mode, 0);
let softMaxMode = ifNull(cmax.mode, 0);
let delta = _max - _min;
// this handles situations like 89.7, 89.69999999999999
// by assuming 0.001x deltas are precision errors
// if (delta > 0 && delta < abs(_max) / 1e3)
// delta = 0;
// treat data as flat if delta is less than 1 billionth
if (delta < 1e-9) {
delta = 0;
// if soft mode is 2 and all vals are flat at 0, avoid the 0.1 * 1e3 fallback
// this prevents 0,0,0 from ranging to -100,100 when softMin/softMax are -1,1
if (_min == 0 || _max == 0) {
delta = 1e-9;
if (softMinMode == 2 && softMin != inf)
padMin = 0;
if (softMaxMode == 2 && softMax != -inf)
padMax = 0;
}
}
let nonZeroDelta = delta || abs(_max) || 1e3;
let mag = log10(nonZeroDelta);
let base = pow(10, floor(mag));
let _padMin = nonZeroDelta * (delta == 0 ? (_min == 0 ? .1 : 1) : padMin);
let _newMin = roundDec(incrRoundDn(_min - _padMin, base/10), 9);
let _softMin = _min >= softMin && (softMinMode == 1 || softMinMode == 3 && _newMin <= softMin || softMinMode == 2 && _newMin >= softMin) ? softMin : inf;
let minLim = max(hardMin, _newMin < _softMin && _min >= _softMin ? _softMin : min(_softMin, _newMin));
let _padMax = nonZeroDelta * (delta == 0 ? (_max == 0 ? .1 : 1) : padMax);
let _newMax = roundDec(incrRoundUp(_max + _padMax, base/10), 9);
let _softMax = _max <= softMax && (softMaxMode == 1 || softMaxMode == 3 && _newMax >= softMax || softMaxMode == 2 && _newMax <= softMax) ? softMax : -inf;
let maxLim = min(hardMax, _newMax > _softMax && _max <= _softMax ? _softMax : max(_softMax, _newMax));
if (minLim == maxLim && minLim == 0)
maxLim = 100;
return [minLim, maxLim];
}
// alternative: https://stackoverflow.com/a/2254896
const fmtNum = new Intl.NumberFormat(navigator.language).format;
const M = Math;
const PI = M.PI;
const abs = M.abs;
const floor = M.floor;
const round = M.round;
const ceil = M.ceil;
const min = M.min;
const max = M.max;
const pow = M.pow;
const sign = M.sign;
const log10 = M.log10;
const log2 = M.log2;
// TODO: seems like this needs to match asinh impl if the passed v is tweaked?
const sinh = (v, linthresh = 1) => M.sinh(v) * linthresh;
const asinh = (v, linthresh = 1) => M.asinh(v / linthresh);
const inf = Infinity;
function numIntDigits(x) {
return (log10((x ^ (x >> 31)) - (x >> 31)) | 0) + 1;
}
function incrRound(num, incr) {
return round(num/incr)*incr;
}
function clamp(num, _min, _max) {
return min(max(num, _min), _max);
}
function fnOrSelf(v) {
return typeof v == "function" ? v : () => v;
}
const retArg0 = _0 => _0;
const retArg1 = (_0, _1) => _1;
const retNull = _ => null;
const retTrue = _ => true;
const retEq = (a, b) => a == b;
function incrRoundUp(num, incr) {
return ceil(num/incr)*incr;
}
function incrRoundDn(num, incr) {
return floor(num/incr)*incr;
}
function roundDec(val, dec) {
return round(val * (dec = 10**dec)) / dec;
}
const fixedDec = new Map();
function guessDec(num) {
return ((""+num).split(".")[1] || "").length;
}
function genIncrs(base, minExp, maxExp, mults) {
let incrs = [];
let multDec = mults.map(guessDec);
for (let exp = minExp; exp < maxExp; exp++) {
let expa = abs(exp);
let mag = roundDec(pow(base, exp), expa);
for (let i = 0; i < mults.length; i++) {
let _incr = mults[i] * mag;
let dec = (_incr >= 0 && exp >= 0 ? 0 : expa) + (exp >= multDec[i] ? 0 : multDec[i]);
let incr = roundDec(_incr, dec);
incrs.push(incr);
fixedDec.set(incr, dec);
}
}
return incrs;
}
//export const assign = Object.assign;
const EMPTY_OBJ = {};
const EMPTY_ARR = [];
const nullNullTuple = [null, null];
const isArr = Array.isArray;
function isStr(v) {
return typeof v == 'string';
}
function isObj(v) {
let is = false;
if (v != null) {
let c = v.constructor;
is = c == null || c == Object;
}
return is;
}
function fastIsObj(v) {
return v != null && typeof v == 'object';
}
function copy(o, _isObj = isObj) {
let out;
if (isArr(o)) {
let val = o.find(v => v != null);
if (isArr(val) || _isObj(val)) {
out = Array(o.length);
for (let i = 0; i < o.length; i++)
out[i] = copy(o[i], _isObj);
}
else
out = o.slice();
}
else if (_isObj(o)) {
out = {};
for (let k in o)
out[k] = copy(o[k], _isObj);
}
else
out = o;
return out;
}
function assign(targ) {
let args = arguments;
for (let i = 1; i < args.length; i++) {
let src = args[i];
for (let key in src) {
if (isObj(targ[key]))
assign(targ[key], copy(src[key]));
else
targ[key] = copy(src[key]);
}
}
return targ;
}
// nullModes
const NULL_REMOVE = 0; // nulls are converted to undefined (e.g. for spanGaps: true)
const NULL_RETAIN = 1; // nulls are retained, with alignment artifacts set to undefined (default)
const NULL_EXPAND = 2; // nulls are expanded to include any adjacent alignment artifacts
// sets undefined values to nulls when adjacent to existing nulls (minesweeper)
function nullExpand(yVals, nullIdxs, alignedLen) {
for (let i = 0, xi, lastNullIdx = -1; i < nullIdxs.length; i++) {
let nullIdx = nullIdxs[i];
if (nullIdx > lastNullIdx) {
xi = nullIdx - 1;
while (xi >= 0 && yVals[xi] == null)
yVals[xi--] = null;
xi = nullIdx + 1;
while (xi < alignedLen && yVals[xi] == null)
yVals[lastNullIdx = xi++] = null;
}
}
}
// nullModes is a tables-matched array indicating how to treat nulls in each series
// output is sorted ASC on the joined field (table[0]) and duplicate join values are collapsed
function join(tables, nullModes) {
let xVals = new Set();
for (let ti = 0; ti < tables.length; ti++) {
let t = tables[ti];
let xs = t[0];
let len = xs.length;
for (let i = 0; i < len; i++)
xVals.add(xs[i]);
}
let data = [Array.from(xVals).sort((a, b) => a - b)];
let alignedLen = data[0].length;
let xIdxs = new Map();
for (let i = 0; i < alignedLen; i++)
xIdxs.set(data[0][i], i);
for (let ti = 0; ti < tables.length; ti++) {
let t = tables[ti];
let xs = t[0];
for (let si = 1; si < t.length; si++) {
let ys = t[si];
let yVals = Array(alignedLen).fill(undefined);
let nullMode = nullModes ? nullModes[ti][si] : NULL_RETAIN;
let nullIdxs = [];
for (let i = 0; i < ys.length; i++) {
let yVal = ys[i];
let alignedIdx = xIdxs.get(xs[i]);
if (yVal === null) {
if (nullMode != NULL_REMOVE) {
yVals[alignedIdx] = yVal;
if (nullMode == NULL_EXPAND)
nullIdxs.push(alignedIdx);
}
}
else
yVals[alignedIdx] = yVal;
}
nullExpand(yVals, nullIdxs, alignedLen);
data.push(yVals);
}
}
return data;
}
const microTask = typeof queueMicrotask == "undefined" ? fn => Promise.resolve().then(fn) : queueMicrotask;
const WIDTH = "width";
const HEIGHT = "height";
const TOP = "top";
const BOTTOM = "bottom";
const LEFT = "left";
const RIGHT = "right";
const hexBlack = "#000";
const transparent = hexBlack + "0";
const mousemove = "mousemove";
const mousedown = "mousedown";
const mouseup = "mouseup";
const mouseenter = "mouseenter";
const mouseleave = "mouseleave";
const dblclick = "dblclick";
const resize = "resize";
const scroll = "scroll";
const change = "change";
const dppxchange = "dppxchange";
const pre = "u-";
const UPLOT = "uplot";
const ORI_HZ = pre + "hz";
const ORI_VT = pre + "vt";
const TITLE = pre + "title";
const WRAP = pre + "wrap";
const UNDER = pre + "under";
const OVER = pre + "over";
const AXIS = pre + "axis";
const OFF = pre + "off";
const SELECT = pre + "select";
const CURSOR_X = pre + "cursor-x";
const CURSOR_Y = pre + "cursor-y";
const CURSOR_PT = pre + "cursor-pt";
const LEGEND = pre + "legend";
const LEGEND_LIVE = pre + "live";
const LEGEND_INLINE = pre + "inline";
const LEGEND_THEAD = pre + "thead";
const LEGEND_SERIES = pre + "series";
const LEGEND_MARKER = pre + "marker";
const LEGEND_LABEL = pre + "label";
const LEGEND_VALUE = pre + "value";
const doc = document;
const win = window;
let pxRatio;
let query;
function setPxRatio() {
let _pxRatio = devicePixelRatio;
// during print preview, Chrome fires off these dppx queries even without changes
if (pxRatio != _pxRatio) {
pxRatio = _pxRatio;
query && off(change, query, setPxRatio);
query = matchMedia(`(min-resolution: ${pxRatio - 0.001}dppx) and (max-resolution: ${pxRatio + 0.001}dppx)`);
on(change, query, setPxRatio);
win.dispatchEvent(new CustomEvent(dppxchange));
}
}
function addClass(el, c) {
if (c != null) {
let cl = el.classList;
!cl.contains(c) && cl.add(c);
}
}
function remClass(el, c) {
let cl = el.classList;
cl.contains(c) && cl.remove(c);
}
function setStylePx(el, name, value) {
el.style[name] = value + "px";
}
function placeTag(tag, cls, targ, refEl) {
let el = doc.createElement(tag);
if (cls != null)
addClass(el, cls);
if (targ != null)
targ.insertBefore(el, refEl);
return el;
}
function placeDiv(cls, targ) {
return placeTag("div", cls, targ);
}
const xformCache = new WeakMap();
function elTrans(el, xPos, yPos, xMax, yMax) {
let xform = "translate(" + xPos + "px," + yPos + "px)";
let xformOld = xformCache.get(el);
if (xform != xformOld) {
el.style.transform = xform;
xformCache.set(el, xform);
if (xPos < 0 || yPos < 0 || xPos > xMax || yPos > yMax)
addClass(el, OFF);
else
remClass(el, OFF);
}
}
const colorCache = new WeakMap();
function elColor(el, background, borderColor) {
let newColor = background + borderColor;
let oldColor = colorCache.get(el);
if (newColor != oldColor) {
colorCache.set(el, newColor);
el.style.background = background;
el.style.borderColor = borderColor;
}
}
const sizeCache = new WeakMap();
function elSize(el, newWid, newHgt, centered) {
let newSize = newWid + "" + newHgt;
let oldSize = sizeCache.get(el);
if (newSize != oldSize) {
sizeCache.set(el, newSize);
el.style.height = newHgt + "px";
el.style.width = newWid + "px";
el.style.marginLeft = centered ? -newWid/2 + "px" : 0;
el.style.marginTop = centered ? -newHgt/2 + "px" : 0;
}
}
const evOpts = {passive: true};
const evOpts2 = assign({capture: true}, evOpts);
function on(ev, el, cb, capt) {
el.addEventListener(ev, cb, capt ? evOpts2 : evOpts);
}
function off(ev, el, cb, capt) {
el.removeEventListener(ev, cb, capt ? evOpts2 : evOpts);
}
setPxRatio();
const months = [
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December",
];
const days = [
"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
];
function slice3(str) {
return str.slice(0, 3);
}
const days3 = days.map(slice3);
const months3 = months.map(slice3);
const engNames = {
MMMM: months,
MMM: months3,
WWWW: days,
WWW: days3,
};
function zeroPad2(int) {
return (int < 10 ? '0' : '') + int;
}
function zeroPad3(int) {
return (int < 10 ? '00' : int < 100 ? '0' : '') + int;
}
/*
function suffix(int) {
let mod10 = int % 10;
return int + (
mod10 == 1 && int != 11 ? "st" :
mod10 == 2 && int != 12 ? "nd" :
mod10 == 3 && int != 13 ? "rd" : "th"
);
}
*/
const subs = {
// 2019
YYYY: d => d.getFullYear(),
// 19
YY: d => (d.getFullYear()+'').slice(2),
// July
MMMM: (d, names) => names.MMMM[d.getMonth()],
// Jul
MMM: (d, names) => names.MMM[d.getMonth()],
// 07
MM: d => zeroPad2(d.getMonth()+1),
// 7
M: d => d.getMonth()+1,
// 09
DD: d => zeroPad2(d.getDate()),
// 9
D: d => d.getDate(),
// Monday
WWWW: (d, names) => names.WWWW[d.getDay()],
// Mon
WWW: (d, names) => names.WWW[d.getDay()],
// 03
HH: d => zeroPad2(d.getHours()),
// 3
H: d => d.getHours(),
// 9 (12hr, unpadded)
h: d => {let h = d.getHours(); return h == 0 ? 12 : h > 12 ? h - 12 : h;},
// AM
AA: d => d.getHours() >= 12 ? 'PM' : 'AM',
// am
aa: d => d.getHours() >= 12 ? 'pm' : 'am',
// a
a: d => d.getHours() >= 12 ? 'p' : 'a',
// 09
mm: d => zeroPad2(d.getMinutes()),
// 9
m: d => d.getMinutes(),
// 09
ss: d => zeroPad2(d.getSeconds()),
// 9
s: d => d.getSeconds(),
// 374
fff: d => zeroPad3(d.getMilliseconds()),
};
function fmtDate(tpl, names) {
names = names || engNames;
let parts = [];
let R = /\{([a-z]+)\}|[^{]+/gi, m;
while (m = R.exec(tpl))
parts.push(m[0][0] == '{' ? subs[m[1]] : m[0]);
return d => {
let out = '';
for (let i = 0; i < parts.length; i++)
out += typeof parts[i] == "string" ? parts[i] : parts[i](d, names);
return out;
}
}
const localTz = new Intl.DateTimeFormat().resolvedOptions().timeZone;
// https://stackoverflow.com/questions/15141762/how-to-initialize-a-javascript-date-to-a-particular-time-zone/53652131#53652131
function tzDate(date, tz) {
let date2;
// perf optimization
if (tz == 'UTC' || tz == 'Etc/UTC')
date2 = new Date(+date + date.getTimezoneOffset() * 6e4);
else if (tz == localTz)
date2 = date;
else {
date2 = new Date(date.toLocaleString('en-US', {timeZone: tz}));
date2.setMilliseconds(date.getMilliseconds());
}
return date2;
}
//export const series = [];
// default formatters:
const onlyWhole = v => v % 1 == 0;
const allMults = [1,2,2.5,5];
// ...0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.25, 0.5
const decIncrs = genIncrs(10, -16, 0, allMults);
// 1, 2, 2.5, 5, 10, 20, 25, 50...
const oneIncrs = genIncrs(10, 0, 16, allMults);
// 1, 2, 5, 10, 20, 25, 50...
const wholeIncrs = oneIncrs.filter(onlyWhole);
const numIncrs = decIncrs.concat(oneIncrs);
const NL = "\n";
const yyyy = "{YYYY}";
const NLyyyy = NL + yyyy;
const md = "{M}/{D}";
const NLmd = NL + md;
const NLmdyy = NLmd + "/{YY}";
const aa = "{aa}";
const hmm = "{h}:{mm}";
const hmmaa = hmm + aa;
const NLhmmaa = NL + hmmaa;
const ss = ":{ss}";
const _ = null;
function genTimeStuffs(ms) {
let s = ms * 1e3,
m = s * 60,
h = m * 60,
d = h * 24,
mo = d * 30,
y = d * 365;
// min of 1e-3 prevents setting a temporal x ticks too small since Date objects cannot advance ticks smaller than 1ms
let subSecIncrs = ms == 1 ? genIncrs(10, 0, 3, allMults).filter(onlyWhole) : genIncrs(10, -3, 0, allMults);
let timeIncrs = subSecIncrs.concat([
// minute divisors (# of secs)
s,
s * 5,
s * 10,
s * 15,
s * 30,
// hour divisors (# of mins)
m,
m * 5,
m * 10,
m * 15,
m * 30,
// day divisors (# of hrs)
h,
h * 2,
h * 3,
h * 4,
h * 6,
h * 8,
h * 12,
// month divisors TODO: need more?
d,
d * 2,
d * 3,
d * 4,
d * 5,
d * 6,
d * 7,
d * 8,
d * 9,
d * 10,
d * 15,
// year divisors (# months, approx)
mo,
mo * 2,
mo * 3,
mo * 4,
mo * 6,
// century divisors
y,
y * 2,
y * 5,
y * 10,
y * 25,
y * 50,
y * 100,
]);
// [0]: minimum num secs in the tick incr
// [1]: default tick format
// [2-7]: rollover tick formats
// [8]: mode: 0: replace [1] -> [2-7], 1: concat [1] + [2-7]
const _timeAxisStamps = [
// tick incr default year month day hour min sec mode
[y, yyyy, _, _, _, _, _, _, 1],
[d * 28, "{MMM}", NLyyyy, _, _, _, _, _, 1],
[d, md, NLyyyy, _, _, _, _, _, 1],
[h, "{h}" + aa, NLmdyy, _, NLmd, _, _, _, 1],
[m, hmmaa, NLmdyy, _, NLmd, _, _, _, 1],
[s, ss, NLmdyy + " " + hmmaa, _, NLmd + " " + hmmaa, _, NLhmmaa, _, 1],
[ms, ss + ".{fff}", NLmdyy + " " + hmmaa, _, NLmd + " " + hmmaa, _, NLhmmaa, _, 1],
];
// the ensures that axis ticks, values & grid are aligned to logical temporal breakpoints and not an arbitrary timestamp
// https://www.timeanddate.com/time/dst/
// https://www.timeanddate.com/time/dst/2019.html
// https://www.epochconverter.com/timezones
function timeAxisSplits(tzDate) {
return (self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace) => {
let splits = [];
let isYr = foundIncr >= y;
let isMo = foundIncr >= mo && foundIncr < y;
// get the timezone-adjusted date
let minDate = tzDate(scaleMin);
let minDateTs = roundDec(minDate * ms, 3);
// get ts of 12am (this lands us at or before the original scaleMin)
let minMin = mkDate(minDate.getFullYear(), isYr ? 0 : minDate.getMonth(), isMo || isYr ? 1 : minDate.getDate());
let minMinTs = roundDec(minMin * ms, 3);
if (isMo || isYr) {
let moIncr = isMo ? foundIncr / mo : 0;
let yrIncr = isYr ? foundIncr / y : 0;
// let tzOffset = scaleMin - minDateTs; // needed?
let split = minDateTs == minMinTs ? minDateTs : roundDec(mkDate(minMin.getFullYear() + yrIncr, minMin.getMonth() + moIncr, 1) * ms, 3);
let splitDate = new Date(round(split / ms));
let baseYear = splitDate.getFullYear();
let baseMonth = splitDate.getMonth();
for (let i = 0; split <= scaleMax; i++) {
let next = mkDate(baseYear + yrIncr * i, baseMonth + moIncr * i, 1);
let offs = next - tzDate(roundDec(next * ms, 3));
split = roundDec((+next + offs) * ms, 3);
if (split <= scaleMax)
splits.push(split);
}
}
else {
let incr0 = foundIncr >= d ? d : foundIncr;
let tzOffset = floor(scaleMin) - floor(minDateTs);
let split = minMinTs + tzOffset + incrRoundUp(minDateTs - minMinTs, incr0);
splits.push(split);
let date0 = tzDate(split);
let prevHour = date0.getHours() + (date0.getMinutes() / m) + (date0.getSeconds() / h);
let incrHours = foundIncr / h;
let minSpace = self.axes[axisIdx]._space;
let pctSpace = foundSpace / minSpace;
while (1) {
split = roundDec(split + foundIncr, ms == 1 ? 0 : 3);
if (split > scaleMax)
break;
if (incrHours > 1) {
let expectedHour = floor(roundDec(prevHour + incrHours, 6)) % 24;
let splitDate = tzDate(split);
let actualHour = splitDate.getHours();
let dstShift = actualHour - expectedHour;
if (dstShift > 1)
dstShift = -1;
split -= dstShift * h;
prevHour = (prevHour + incrHours) % 24;
// add a tick only if it's further than 70% of the min allowed label spacing
let prevSplit = splits[splits.length - 1];
let pctIncr = roundDec((split - prevSplit) / foundIncr, 3);
if (pctIncr * pctSpace >= .7)
splits.push(split);
}
else
splits.push(split);
}
}
return splits;
}
}
return [
timeIncrs,
_timeAxisStamps,
timeAxisSplits,
];
}
const [ timeIncrsMs, _timeAxisStampsMs, timeAxisSplitsMs ] = genTimeStuffs(1);
const [ timeIncrsS, _timeAxisStampsS, timeAxisSplitsS ] = genTimeStuffs(1e-3);
// base 2
genIncrs(2, -53, 53, [1]);
/*
console.log({
decIncrs,
oneIncrs,
wholeIncrs,
numIncrs,
timeIncrs,
fixedDec,
});
*/
function timeAxisStamps(stampCfg, fmtDate) {
return stampCfg.map(s => s.map((v, i) =>
i == 0 || i == 8 || v == null ? v : fmtDate(i == 1 || s[8] == 0 ? v : s[1] + v)
));
}
// TODO: will need to accept spaces[] and pull incr into the loop when grid will be non-uniform, eg for log scales.
// currently we ignore this for months since they're *nearly* uniform and the added complexity is not worth it
function timeAxisVals(tzDate, stamps) {
return (self, splits, axisIdx, foundSpace, foundIncr) => {
let s = stamps.find(s => foundIncr >= s[0]) || stamps[stamps.length - 1];
// these track boundaries when a full label is needed again
let prevYear;
let prevMnth;
let prevDate;
let prevHour;
let prevMins;
let prevSecs;
return splits.map(split => {
let date = tzDate(split);
let newYear = date.getFullYear();
let newMnth = date.getMonth();
let newDate = date.getDate();
let newHour = date.getHours();
let newMins = date.getMinutes();
let newSecs = date.getSeconds();
let stamp = (
newYear != prevYear && s[2] ||
newMnth != prevMnth && s[3] ||
newDate != prevDate && s[4] ||
newHour != prevHour && s[5] ||
newMins != prevMins && s[6] ||
newSecs != prevSecs && s[7] ||
s[1]
);
prevYear = newYear;
prevMnth = newMnth;
prevDate = newDate;
prevHour = newHour;
prevMins = newMins;
prevSecs = newSecs;
return stamp(date);
});
}
}
// for when axis.values is defined as a static fmtDate template string
function timeAxisVal(tzDate, dateTpl) {
let stamp = fmtDate(dateTpl);
return (self, splits, axisIdx, foundSpace, foundIncr) => splits.map(split => stamp(tzDate(split)));
}
function mkDate(y, m, d) {
return new Date(y, m, d);
}
function timeSeriesStamp(stampCfg, fmtDate) {
return fmtDate(stampCfg);
}
const _timeSeriesStamp = '{YYYY}-{MM}-{DD} {h}:{mm}{aa}';
function timeSeriesVal(tzDate, stamp) {
return (self, val) => stamp(tzDate(val));
}
function legendStroke(self, seriesIdx) {
let s = self.series[seriesIdx];
return s.width ? s.stroke(self, seriesIdx) : s.points.width ? s.points.stroke(self, seriesIdx) : null;
}
function legendFill(self, seriesIdx) {
return self.series[seriesIdx].fill(self, seriesIdx);
}
const legendOpts = {
show: true,
live: true,
isolate: false,
markers: {
show: true,
width: 2,
stroke: legendStroke,
fill: legendFill,
dash: "solid",
},
idx: null,
idxs: null,
values: [],
};
function cursorPointShow(self, si) {
let o = self.cursor.points;
let pt = placeDiv();
let size = o.size(self, si);
setStylePx(pt, WIDTH, size);
setStylePx(pt, HEIGHT, size);
let mar = size / -2;
setStylePx(pt, "marginLeft", mar);
setStylePx(pt, "marginTop", mar);
let width = o.width(self, si, size);
width && setStylePx(pt, "borderWidth", width);
return pt;
}
function cursorPointFill(self, si) {
let sp = self.series[si].points;
return sp._fill || sp._stroke;
}
function cursorPointStroke(self, si) {
let sp = self.series[si].points;
return sp._stroke || sp._fill;
}
function cursorPointSize(self, si) {
let sp = self.series[si].points;
return ptDia(sp.width, 1);
}
function dataIdx(self, seriesIdx, cursorIdx) {
return cursorIdx;
}
const moveTuple = [0,0];
function cursorMove(self, mouseLeft1, mouseTop1) {
moveTuple[0] = mouseLeft1;
moveTuple[1] = mouseTop1;
return moveTuple;
}
function filtBtn0(self, targ, handle) {
return e => {
e.button == 0 && handle(e);
};
}
function passThru(self, targ, handle) {
return handle;
}
const cursorOpts = {
show: true,
x: true,
y: true,
lock: false,
move: cursorMove,
points: {
show: cursorPointShow,
size: cursorPointSize,
width: 0,
stroke: cursorPointStroke,
fill: cursorPointFill,
},
bind: {
mousedown: filtBtn0,
mouseup: filtBtn0,
click: filtBtn0,
dblclick: filtBtn0,
mousemove: passThru,
mouseleave: passThru,
mouseenter: passThru,
},
drag: {
setScale: true,
x: true,
y: false,
dist: 0,
uni: null,
_x: false,
_y: false,
},
focus: {
prox: -1,
},
left: -10,
top: -10,
idx: null,
dataIdx,
idxs: null,
};
const grid = {
show: true,
stroke: "rgba(0,0,0,0.07)",
width: 2,
// dash: [],
filter: retArg1,
};
const ticks = assign({}, grid, {size: 10});
const font = '12px system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji"';
const labelFont = "bold " + font;
const lineMult = 1.5; // font-size multiplier
const xAxisOpts = {
show: true,
scale: "x",
stroke: hexBlack,
space: 50,
gap: 5,
size: 50,
labelGap: 0,
labelSize: 30,
labelFont,
side: 2,
// class: "x-vals",
// incrs: timeIncrs,
// values: timeVals,
// filter: retArg1,
grid,
ticks,
font,
rotate: 0,
};
const numSeriesLabel = "Value";
const timeSeriesLabel = "Time";
const xSeriesOpts = {
show: true,
scale: "x",
auto: false,
sorted: 1,
// label: "Time",
// value: v => stamp(new Date(v * 1e3)),
// internal caches
min: inf,
max: -inf,
idxs: [],
};
function numAxisVals(self, splits, axisIdx, foundSpace, foundIncr) {
return splits.map(v => v == null ? "" : fmtNum(v));
}
function numAxisSplits(self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace, forceMin) {
let splits = [];
let numDec = fixedDec.get(foundIncr) || 0;
scaleMin = forceMin ? scaleMin : roundDec(incrRoundUp(scaleMin, foundIncr), numDec);
for (let val = scaleMin; val <= scaleMax; val = roundDec(val + foundIncr, numDec))
splits.push(Object.is(val, -0) ? 0 : val); // coalesces -0
return splits;
}
// this doesnt work for sin, which needs to come off from 0 independently in pos and neg dirs
function logAxisSplits(self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace, forceMin) {
const splits = [];
const logBase = self.scales[self.axes[axisIdx].scale].log;
const logFn = logBase == 10 ? log10 : log2;
const exp = floor(logFn(scaleMin));
foundIncr = pow(logBase, exp);
if (exp < 0)
foundIncr = roundDec(foundIncr, -exp);
let split = scaleMin;
do {
splits.push(split);
split = roundDec(split + foundIncr, fixedDec.get(foundIncr));
if (split >= foundIncr * logBase)
foundIncr = split;
} while (split <= scaleMax);
return splits;
}
function asinhAxisSplits(self, axisIdx, scaleMin, scaleMax, foundIncr, foundSpace, forceMin) {
let sc = self.scales[self.axes[axisIdx].scale];
let linthresh = sc.asinh;
let posSplits = scaleMax > linthresh ? logAxisSplits(self, axisIdx, max(linthresh, scaleMin), scaleMax, foundIncr) : [linthresh];
let zero = scaleMax >= 0 && scaleMin <= 0 ? [0] : [];
let negSplits = scaleMin < -linthresh ? logAxisSplits(self, axisIdx, max(linthresh, -scaleMax), -scaleMin, foundIncr): [linthresh];
return negSplits.reverse().map(v => -v).concat(zero, posSplits);
}
const RE_ALL = /./;
const RE_12357 = /[12357]/;
const RE_125 = /[125]/;
const RE_1 = /1/;
function logAxisValsFilt(self, splits, axisIdx, foundSpace, foundIncr) {
let axis = self.axes[axisIdx];
let scaleKey = axis.scale;
let sc = self.scales[scaleKey];
if (sc.distr == 3 && sc.log == 2)
return splits;
let valToPos = self.valToPos;
let minSpace = axis._space;
let _10 = valToPos(10, scaleKey);
let re = (
valToPos(9, scaleKey) - _10 >= minSpace ? RE_ALL :
valToPos(7, scaleKey) - _10 >= minSpace ? RE_12357 :
valToPos(5, scaleKey) - _10 >= minSpace ? RE_125 :
RE_1
);
return splits.map(v => ((sc.distr == 4 && v == 0) || re.test(v)) ? v : null);
}
function numSeriesVal(self, val) {
return val == null ? "" : fmtNum(val);
}
const yAxisOpts = {
show: true,
scale: "y",
stroke: hexBlack,
space: 30,
gap: 5,
size: 50,
labelGap: 0,
labelSize: 30,
labelFont,
side: 3,
// class: "y-vals",
// incrs: numIncrs,
// values: (vals, space) => vals,
// filter: retArg1,
grid,
ticks,
font,
rotate: 0,
};
// takes stroke width
function ptDia(width, mult) {
let dia = 3 + (width || 1) * 2;
return roundDec(dia * mult, 3);
}
function seriesPointsShow(self, si) {
let { scale, idxs } = self.series[0];
let xData = self._data[0];
let p0 = self.valToPos(xData[idxs[0]], scale, true);
let p1 = self.valToPos(xData[idxs[1]], scale, true);
let dim = abs(p1 - p0);
let s = self.series[si];
// const dia = ptDia(s.width, pxRatio);
let maxPts = dim / (s.points.space * pxRatio);
return idxs[1] - idxs[0] <= maxPts;
}
function seriesFillTo(self, seriesIdx, dataMin, dataMax) {
let scale = self.scales[self.series[seriesIdx].scale];
let isUpperBandEdge = self.bands && self.bands.some(b => b.series[0] == seriesIdx);
return scale.distr == 3 || isUpperBandEdge ? scale.min : 0;
}
const facet = {
scale: null,
auto: true,
// internal caches
min: inf,
max: -inf,
};
const xySeriesOpts = {
show: true,
auto: true,
sorted: 0,
alpha: 1,
facets: [
assign({}, facet, {scale: 'x'}),
assign({}, facet, {scale: 'y'}),
],
};
const ySeriesOpts = {
scale: "y",
auto: true,
sorted: 0,
show: true,
spanGaps: false,
gaps: (self, seriesIdx, idx0, idx1, nullGaps) => nullGaps,
alpha: 1,
points: {
show: seriesPointsShow,
filter: null,
// paths:
// stroke: "#000",
// fill: "#fff",
// width: 1,
// size: 10,
},
// label: "Value",
// value: v => v,
values: null,
// internal caches
min: inf,
max: -inf,
idxs: [],
path: null,
clip: null,
};
function clampScale(self, val, scaleMin, scaleMax, scaleKey) {
/*
if (val < 0) {
let cssHgt = self.bbox.height / pxRatio;
let absPos = self.valToPos(abs(val), scaleKey);
let fromBtm = cssHgt - absPos;
return self.posToVal(cssHgt + fromBtm, scaleKey);
}
*/
return scaleMin / 10;
}
const xScaleOpts = {
time: FEAT_TIME,
auto: true,
distr: 1,
log: 10,
asinh: 1,
min: null,
max: null,
dir: 1,
ori: 0,
};
const yScaleOpts = assign({}, xScaleOpts, {
time: false,
ori: 1,
});
const syncs = {};
function _sync(key, opts) {
let s = syncs[key];
if (!s) {
s = {
key,
plots: [],
sub(plot) {
s.plots.push(plot);
},
unsub(plot) {
s.plots = s.plots.filter(c => c != plot);
},
pub(type, self, x, y, w, h, i) {
for (let j = 0; j < s.plots.length; j++)
s.plots[j] != self && s.plots[j].pub(type, self, x, y, w, h, i);
},
};
if (key != null)
syncs[key] = s;
}
return s;
}
const BAND_CLIP_FILL = 1 << 0;
const BAND_CLIP_STROKE = 1 << 1;
function orient(u, seriesIdx, cb) {
const series = u.series[seriesIdx];
const scales = u.scales;
const bbox = u.bbox;
const scaleX = u.mode == 2 ? scales[series.facets[0].scale] : scales[u.series[0].scale];
let dx = u._data[0],
dy = u._data[seriesIdx],
sx = scaleX,
sy = u.mode == 2 ? scales[series.facets[1].scale] : scales[series.scale],
l = bbox.left,
t = bbox.top,
w = bbox.width,
h = bbox.height,
H = u.valToPosH,
V = u.valToPosV;
return (sx.ori == 0
? cb(
series,
dx,
dy,
sx,
sy,
H,
V,
l,
t,
w,
h,
moveToH,
lineToH,
rectH,
arcH,
bezierCurveToH,
)
: cb(
series,
dx,
dy,
sx,
sy,
V,
H,
t,
l,
h,
w,
moveToV,
lineToV,
rectV,
arcV,
bezierCurveToV,
)
);
}
// creates inverted band clip path (towards from stroke path -> yMax)
function clipBandLine(self, seriesIdx, idx0, idx1, strokePath) {
return orient(self, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let pxRound = series.pxRound;
const dir = scaleX.dir * (scaleX.ori == 0 ? 1 : -1);
const lineTo = scaleX.ori == 0 ? lineToH : lineToV;
let frIdx, toIdx;
if (dir == 1) {
frIdx = idx0;
toIdx = idx1;
}
else {
frIdx = idx1;
toIdx = idx0;
}
// path start
let x0 = pxRound(valToPosX(dataX[frIdx], scaleX, xDim, xOff));
let y0 = pxRound(valToPosY(dataY[frIdx], scaleY, yDim, yOff));
// path end x
let x1 = pxRound(valToPosX(dataX[toIdx], scaleX, xDim, xOff));
// upper y limit
let yLimit = pxRound(valToPosY(scaleY.max, scaleY, yDim, yOff));
let clip = new Path2D(strokePath);
lineTo(clip, x1, yLimit);
lineTo(clip, x0, yLimit);
lineTo(clip, x0, y0);
return clip;
});
}
function clipGaps(gaps, ori, plotLft, plotTop, plotWid, plotHgt) {
let clip = null;
// create clip path (invert gaps and non-gaps)
if (gaps.length > 0) {
clip = new Path2D();
const rect = ori == 0 ? rectH : rectV;
let prevGapEnd = plotLft;
for (let i = 0; i < gaps.length; i++) {
let g = gaps[i];
if (g[1] > g[0]) {
let w = g[0] - prevGapEnd;
w > 0 && rect(clip, prevGapEnd, plotTop, w, plotTop + plotHgt);
prevGapEnd = g[1];
}
}
let w = plotLft + plotWid - prevGapEnd;
w > 0 && rect(clip, prevGapEnd, plotTop, w, plotTop + plotHgt);
}
return clip;
}
function addGap(gaps, fromX, toX) {
let prevGap = gaps[gaps.length - 1];
if (prevGap && prevGap[0] == fromX) // TODO: gaps must be encoded at stroke widths?
prevGap[1] = toX;
else
gaps.push([fromX, toX]);
}
function pxRoundGen(pxAlign) {
return pxAlign == 0 ? retArg0 : pxAlign == 1 ? round : v => incrRound(v, pxAlign);
}
function rect(ori) {
let moveTo = ori == 0 ?
moveToH :
moveToV;
let arcTo = ori == 0 ?
(p, x1, y1, x2, y2, r) => { p.arcTo(x1, y1, x2, y2, r); } :
(p, y1, x1, y2, x2, r) => { p.arcTo(x1, y1, x2, y2, r); };
let rect = ori == 0 ?
(p, x, y, w, h) => { p.rect(x, y, w, h); } :
(p, y, x, h, w) => { p.rect(x, y, w, h); };
return (p, x, y, w, h, r = 0) => {
if (r == 0)
rect(p, x, y, w, h);
else {
r = min(r, w / 2, h / 2);
// adapted from https://stackoverflow.com/questions/1255512/how-to-draw-a-rounded-rectangle-using-html-canvas/7838871#7838871
moveTo(p, x + r, y);
arcTo(p, x + w, y, x + w, y + h, r);
arcTo(p, x + w, y + h, x, y + h, r);
arcTo(p, x, y + h, x, y, r);
arcTo(p, x, y, x + w, y, r);
p.closePath();
}
};
}
// orientation-inverting canvas functions
const moveToH = (p, x, y) => { p.moveTo(x, y); };
const moveToV = (p, y, x) => { p.moveTo(x, y); };
const lineToH = (p, x, y) => { p.lineTo(x, y); };
const lineToV = (p, y, x) => { p.lineTo(x, y); };
const rectH = rect(0);
const rectV = rect(1);
const arcH = (p, x, y, r, startAngle, endAngle) => { p.arc(x, y, r, startAngle, endAngle); };
const arcV = (p, y, x, r, startAngle, endAngle) => { p.arc(x, y, r, startAngle, endAngle); };
const bezierCurveToH = (p, bp1x, bp1y, bp2x, bp2y, p2x, p2y) => { p.bezierCurveTo(bp1x, bp1y, bp2x, bp2y, p2x, p2y); };
const bezierCurveToV = (p, bp1y, bp1x, bp2y, bp2x, p2y, p2x) => { p.bezierCurveTo(bp1x, bp1y, bp2x, bp2y, p2x, p2y); };
// TODO: drawWrap(seriesIdx, drawPoints) (save, restore, translate, clip)
function points(opts) {
return (u, seriesIdx, idx0, idx1, filtIdxs) => {
// log("drawPoints()", arguments);
return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let { pxRound, points } = series;
let moveTo, arc;
if (scaleX.ori == 0) {
moveTo = moveToH;
arc = arcH;
}
else {
moveTo = moveToV;
arc = arcV;
}
const width = roundDec(points.width * pxRatio, 3);
let rad = (points.size - points.width) / 2 * pxRatio;
let dia = roundDec(rad * 2, 3);
let fill = new Path2D();
let clip = new Path2D();
let { left: lft, top: top, width: wid, height: hgt } = u.bbox;
rectH(clip,
lft - dia,
top - dia,
wid + dia * 2,
hgt + dia * 2,
);
const drawPoint = pi => {
if (dataY[pi] != null) {
let x = pxRound(valToPosX(dataX[pi], scaleX, xDim, xOff));
let y = pxRound(valToPosY(dataY[pi], scaleY, yDim, yOff));
moveTo(fill, x + rad, y);
arc(fill, x, y, rad, 0, PI * 2);
}
};
if (filtIdxs)
filtIdxs.forEach(drawPoint);
else {
for (let pi = idx0; pi <= idx1; pi++)
drawPoint(pi);
}
return {
stroke: width > 0 ? fill : null,
fill,
clip,
flags: BAND_CLIP_FILL | BAND_CLIP_STROKE,
};
});
};
}
function _drawAcc(lineTo) {
return (stroke, accX, minY, maxY, inY, outY) => {
if (minY != maxY) {
if (inY != minY && outY != minY)
lineTo(stroke, accX, minY);
if (inY != maxY && outY != maxY)
lineTo(stroke, accX, maxY);
lineTo(stroke, accX, outY);
}
};
}
const drawAccH = _drawAcc(lineToH);
const drawAccV = _drawAcc(lineToV);
function linear() {
return (u, seriesIdx, idx0, idx1) => {
return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let pxRound = series.pxRound;
let lineTo, drawAcc;
if (scaleX.ori == 0) {
lineTo = lineToH;
drawAcc = drawAccH;
}
else {
lineTo = lineToV;
drawAcc = drawAccV;
}
const dir = scaleX.dir * (scaleX.ori == 0 ? 1 : -1);
const _paths = {stroke: new Path2D(), fill: null, clip: null, band: null, gaps: null, flags: BAND_CLIP_FILL};
const stroke = _paths.stroke;
let minY = inf,
maxY = -inf,
inY, outY, outX, drawnAtX;
let gaps = [];
let accX = pxRound(valToPosX(dataX[dir == 1 ? idx0 : idx1], scaleX, xDim, xOff));
let accGaps = false;
let prevYNull = false;
// data edges
let lftIdx = nonNullIdx(dataY, idx0, idx1, 1 * dir);
let rgtIdx = nonNullIdx(dataY, idx0, idx1, -1 * dir);
let lftX = pxRound(valToPosX(dataX[lftIdx], scaleX, xDim, xOff));
let rgtX = pxRound(valToPosX(dataX[rgtIdx], scaleX, xDim, xOff));
if (lftX > xOff)
addGap(gaps, xOff, lftX);
for (let i = dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += dir) {
let x = pxRound(valToPosX(dataX[i], scaleX, xDim, xOff));
if (x == accX) {
if (dataY[i] != null) {
outY = pxRound(valToPosY(dataY[i], scaleY, yDim, yOff));
if (minY == inf) {
lineTo(stroke, x, outY);
inY = outY;
}
minY = min(outY, minY);
maxY = max(outY, maxY);
}
else if (dataY[i] === null)
accGaps = prevYNull = true;
}
else {
let _addGap = false;
if (minY != inf) {
drawAcc(stroke, accX, minY, maxY, inY, outY);
outX = drawnAtX = accX;
}
else if (accGaps) {
_addGap = true;
accGaps = false;
}
if (dataY[i] != null) {
outY = pxRound(valToPosY(dataY[i], scaleY, yDim, yOff));
lineTo(stroke, x, outY);
minY = maxY = inY = outY;
// prior pixel can have data but still start a gap if ends with null
if (prevYNull && x - accX > 1)
_addGap = true;
prevYNull = false;
}
else {
minY = inf;
maxY = -inf;
if (dataY[i] === null) {
accGaps = true;
if (x - accX > 1)
_addGap = true;
}
}
_addGap && addGap(gaps, outX, x);
accX = x;
}
}
if (minY != inf && minY != maxY && drawnAtX != accX)
drawAcc(stroke, accX, minY, maxY, inY, outY);
if (rgtX < xOff + xDim)
addGap(gaps, rgtX, xOff + xDim);
if (series.fill != null) {
let fill = _paths.fill = new Path2D(stroke);
let fillTo = pxRound(valToPosY(series.fillTo(u, seriesIdx, series.min, series.max), scaleY, yDim, yOff));
lineTo(fill, rgtX, fillTo);
lineTo(fill, lftX, fillTo);
}
_paths.gaps = gaps = series.gaps(u, seriesIdx, idx0, idx1, gaps);
if (!series.spanGaps)
_paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim);
if (u.bands.length > 0) {
// ADDL OPT: only create band clips for series that are band lower edges
// if (b.series[1] == i && _paths.band == null)
_paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke);
}
return _paths;
});
};
}
function stepped(opts) {
const align = ifNull(opts.align, 1);
// whether to draw ascenders/descenders at null/gap bondaries
const ascDesc = ifNull(opts.ascDesc, false);
return (u, seriesIdx, idx0, idx1) => {
return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let pxRound = series.pxRound;
let lineTo = scaleX.ori == 0 ? lineToH : lineToV;
const _paths = {stroke: new Path2D(), fill: null, clip: null, band: null, gaps: null, flags: BAND_CLIP_FILL};
const stroke = _paths.stroke;
const _dir = 1 * scaleX.dir * (scaleX.ori == 0 ? 1 : -1);
idx0 = nonNullIdx(dataY, idx0, idx1, 1);
idx1 = nonNullIdx(dataY, idx0, idx1, -1);
let gaps = [];
let inGap = false;
let prevYPos = pxRound(valToPosY(dataY[_dir == 1 ? idx0 : idx1], scaleY, yDim, yOff));
let firstXPos = pxRound(valToPosX(dataX[_dir == 1 ? idx0 : idx1], scaleX, xDim, xOff));
let prevXPos = firstXPos;
lineTo(stroke, firstXPos, prevYPos);
for (let i = _dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dir) {
let yVal1 = dataY[i];
let x1 = pxRound(valToPosX(dataX[i], scaleX, xDim, xOff));
if (yVal1 == null) {
if (yVal1 === null) {
addGap(gaps, prevXPos, x1);
inGap = true;
}
continue;
}
let y1 = pxRound(valToPosY(yVal1, scaleY, yDim, yOff));
if (inGap) {
addGap(gaps, prevXPos, x1);
inGap = false;
}
if (align == 1)
lineTo(stroke, x1, prevYPos);
else
lineTo(stroke, prevXPos, y1);
lineTo(stroke, x1, y1);
prevYPos = y1;
prevXPos = x1;
}
if (series.fill != null) {
let fill = _paths.fill = new Path2D(stroke);
let fillTo = series.fillTo(u, seriesIdx, series.min, series.max);
let minY = pxRound(valToPosY(fillTo, scaleY, yDim, yOff));
lineTo(fill, prevXPos, minY);
lineTo(fill, firstXPos, minY);
}
_paths.gaps = gaps = series.gaps(u, seriesIdx, idx0, idx1, gaps);
// expand/contract clips for ascenders/descenders
let halfStroke = (series.width * pxRatio) / 2;
let startsOffset = (ascDesc || align == 1) ? halfStroke : -halfStroke;
let endsOffset = (ascDesc || align == -1) ? -halfStroke : halfStroke;
gaps.forEach(g => {
g[0] += startsOffset;
g[1] += endsOffset;
});
if (!series.spanGaps)
_paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim);
if (u.bands.length > 0) {
// ADDL OPT: only create band clips for series that are band lower edges
// if (b.series[1] == i && _paths.band == null)
_paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke);
}
return _paths;
});
};
}
function bars(opts) {
opts = opts || EMPTY_OBJ;
const size = ifNull(opts.size, [0.6, inf, 1]);
const align = opts.align || 0;
const extraGap = (opts.gap || 0) * pxRatio;
const radius = ifNull(opts.radius, 0);
const gapFactor = 1 - size[0];
const maxWidth = ifNull(size[1], inf) * pxRatio;
const minWidth = ifNull(size[2], 1) * pxRatio;
const disp = ifNull(opts.disp, EMPTY_OBJ);
const _each = ifNull(opts.each, _ => {});
const { fill: dispFills, stroke: dispStrokes } = disp;
return (u, seriesIdx, idx0, idx1) => {
return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let pxRound = series.pxRound;
const _dirX = scaleX.dir * (scaleX.ori == 0 ? 1 : -1);
const _dirY = scaleY.dir * (scaleY.ori == 1 ? 1 : -1);
let rect = scaleX.ori == 0 ? rectH : rectV;
let each = scaleX.ori == 0 ? _each : (u, seriesIdx, i, top, lft, hgt, wid) => {
_each(u, seriesIdx, i, lft, top, wid, hgt);
};
let fillToY = series.fillTo(u, seriesIdx, series.min, series.max);
let y0Pos = valToPosY(fillToY, scaleY, yDim, yOff);
// barWid is to center of stroke
let xShift, barWid;
let strokeWidth = pxRound(series.width * pxRatio);
let multiPath = false;
let fillColors = null;
let fillPaths = null;
let strokeColors = null;
let strokePaths = null;
if (dispFills != null && dispStrokes != null) {
multiPath = true;
fillColors = dispFills.values(u, seriesIdx, idx0, idx1);
fillPaths = new Map();
(new Set(fillColors)).forEach(color => {
if (color != null)
fillPaths.set(color, new Path2D());
});
strokeColors = dispStrokes.values(u, seriesIdx, idx0, idx1);
strokePaths = new Map();
(new Set(strokeColors)).forEach(color => {
if (color != null)
strokePaths.set(color, new Path2D());
});
}
let { x0, size } = disp;
if (x0 != null && size != null) {
dataX = x0.values(u, seriesIdx, idx0, idx1);
if (x0.unit == 2)
dataX = dataX.map(pct => u.posToVal(xOff + pct * xDim, scaleX.key, true));
// assumes uniform sizes, for now
let sizes = size.values(u, seriesIdx, idx0, idx1);
if (size.unit == 2)
barWid = sizes[0] * xDim;
else
barWid = valToPosX(sizes[0], scaleX, xDim, xOff) - valToPosX(0, scaleX, xDim, xOff); // assumes linear scale (delta from 0)
barWid = pxRound(barWid - strokeWidth);
xShift = (_dirX == 1 ? -strokeWidth / 2 : barWid + strokeWidth / 2);
}
else {
let colWid = xDim;
if (dataX.length > 1) {
// prior index with non-undefined y data
let prevIdx = null;
// scan full dataset for smallest adjacent delta
// will not work properly for non-linear x scales, since does not do expensive valToPosX calcs till end
for (let i = 0, minDelta = Infinity; i < dataX.length; i++) {
if (dataY[i] !== undefined) {
if (prevIdx != null) {
let delta = abs(dataX[i] - dataX[prevIdx]);
if (delta < minDelta) {
minDelta = delta;
colWid = abs(valToPosX(dataX[i], scaleX, xDim, xOff) - valToPosX(dataX[prevIdx], scaleX, xDim, xOff));
}
}
prevIdx = i;
}
}
}
let gapWid = colWid * gapFactor;
barWid = pxRound(min(maxWidth, max(minWidth, colWid - gapWid)) - strokeWidth - extraGap);
xShift = (align == 0 ? barWid / 2 : align == _dirX ? 0 : barWid) - align * _dirX * extraGap / 2;
}
const _paths = {stroke: null, fill: null, clip: null, band: null, gaps: null, flags: BAND_CLIP_FILL | BAND_CLIP_STROKE}; // disp, geom
const hasBands = u.bands.length > 0;
let yLimit;
if (hasBands) {
// ADDL OPT: only create band clips for series that are band lower edges
// if (b.series[1] == i && _paths.band == null)
_paths.band = new Path2D();
yLimit = pxRound(valToPosY(scaleY.max, scaleY, yDim, yOff));
}
const stroke = multiPath ? null : new Path2D();
const band = _paths.band;
for (let i = _dirX == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dirX) {
let yVal = dataY[i];
/*
// interpolate upwards band clips
if (yVal == null) {
// if (hasBands)
// yVal = costlyLerp(i, idx0, idx1, _dirX, dataY);
// else
continue;
}
*/
let xVal = scaleX.distr != 2 || disp != null ? dataX[i] : i;
// TODO: all xPos can be pre-computed once for all series in aligned set
let xPos = valToPosX(xVal, scaleX, xDim, xOff);
let yPos = valToPosY(ifNull(yVal, fillToY) , scaleY, yDim, yOff);
let lft = pxRound(xPos - xShift);
let btm = pxRound(max(yPos, y0Pos));
let top = pxRound(min(yPos, y0Pos));
// this includes the stroke
let barHgt = btm - top;
let r = radius * barWid;
if (yVal != null) { // && yVal != fillToY (0 height bar)
if (multiPath) {
if (strokeWidth > 0 && strokeColors[i] != null)
rect(strokePaths.get(strokeColors[i]), lft, top + floor(strokeWidth / 2), barWid, max(0, barHgt - strokeWidth), r);
if (fillColors[i] != null)
rect(fillPaths.get(fillColors[i]), lft, top + floor(strokeWidth / 2), barWid, max(0, barHgt - strokeWidth), r);
}
else
rect(stroke, lft, top + floor(strokeWidth / 2), barWid, max(0, barHgt - strokeWidth), r);
each(u, seriesIdx, i,
lft - strokeWidth / 2,
top,
barWid + strokeWidth,
barHgt,
);
}
if (hasBands) {
if (_dirY == 1) {
btm = top;
top = yLimit;
}
else {
top = btm;
btm = yLimit;
}
barHgt = btm - top;
rect(band, lft - strokeWidth / 2, top, barWid + strokeWidth, max(0, barHgt), 0);
}
}
if (strokeWidth > 0)
_paths.stroke = multiPath ? strokePaths : stroke;
_paths.fill = multiPath ? fillPaths : stroke;
return _paths;
});
};
}
function splineInterp(interp, opts) {
return (u, seriesIdx, idx0, idx1) => {
return orient(u, seriesIdx, (series, dataX, dataY, scaleX, scaleY, valToPosX, valToPosY, xOff, yOff, xDim, yDim) => {
let pxRound = series.pxRound;
let moveTo, bezierCurveTo, lineTo;
if (scaleX.ori == 0) {
moveTo = moveToH;
lineTo = lineToH;
bezierCurveTo = bezierCurveToH;
}
else {
moveTo = moveToV;
lineTo = lineToV;
bezierCurveTo = bezierCurveToV;
}
const _dir = 1 * scaleX.dir * (scaleX.ori == 0 ? 1 : -1);
idx0 = nonNullIdx(dataY, idx0, idx1, 1);
idx1 = nonNullIdx(dataY, idx0, idx1, -1);
let gaps = [];
let inGap = false;
let firstXPos = pxRound(valToPosX(dataX[_dir == 1 ? idx0 : idx1], scaleX, xDim, xOff));
let prevXPos = firstXPos;
let xCoords = [];
let yCoords = [];
for (let i = _dir == 1 ? idx0 : idx1; i >= idx0 && i <= idx1; i += _dir) {
let yVal = dataY[i];
let xVal = dataX[i];
let xPos = valToPosX(xVal, scaleX, xDim, xOff);
if (yVal == null) {
if (yVal === null) {
addGap(gaps, prevXPos, xPos);
inGap = true;
}
continue;
}
else {
if (inGap) {
addGap(gaps, prevXPos, xPos);
inGap = false;
}
xCoords.push((prevXPos = xPos));
yCoords.push(valToPosY(dataY[i], scaleY, yDim, yOff));
}
}
const _paths = {stroke: interp(xCoords, yCoords, moveTo, lineTo, bezierCurveTo, pxRound), fill: null, clip: null, band: null, gaps: null, flags: BAND_CLIP_FILL};
const stroke = _paths.stroke;
if (series.fill != null && stroke != null) {
let fill = _paths.fill = new Path2D(stroke);
let fillTo = series.fillTo(u, seriesIdx, series.min, series.max);
let minY = pxRound(valToPosY(fillTo, scaleY, yDim, yOff));
lineTo(fill, prevXPos, minY);
lineTo(fill, firstXPos, minY);
}
_paths.gaps = gaps = series.gaps(u, seriesIdx, idx0, idx1, gaps);
if (!series.spanGaps)
_paths.clip = clipGaps(gaps, scaleX.ori, xOff, yOff, xDim, yDim);
if (u.bands.length > 0) {
// ADDL OPT: only create band clips for series that are band lower edges
// if (b.series[1] == i && _paths.band == null)
_paths.band = clipBandLine(u, seriesIdx, idx0, idx1, stroke);
}
return _paths;
// if FEAT_PATHS: false in rollup.config.js
// u.ctx.save();
// u.ctx.beginPath();
// u.ctx.rect(u.bbox.left, u.bbox.top, u.bbox.width, u.bbox.height);
// u.ctx.clip();
// u.ctx.strokeStyle = u.series[sidx].stroke;
// u.ctx.stroke(stroke);
// u.ctx.fillStyle = u.series[sidx].fill;
// u.ctx.fill(fill);
// u.ctx.restore();
// return null;
});
};
}
function monotoneCubic(opts) {
return splineInterp(_monotoneCubic);
}
// Monotone Cubic Spline interpolation, adapted from the Chartist.js implementation:
// https://github.com/gionkunz/chartist-js/blob/e7e78201bffe9609915e5e53cfafa29a5d6c49f9/src/scripts/interpolation.js#L240-L369
function _monotoneCubic(xs, ys, moveTo, lineTo, bezierCurveTo, pxRound) {
const n = xs.length;
if (n < 2)
return null;
const path = new Path2D();
moveTo(path, xs[0], ys[0]);
if (n == 2)
lineTo(path, xs[1], ys[1]);
else {
let ms = Array(n),
ds = Array(n - 1),
dys = Array(n - 1),
dxs = Array(n - 1);
// calc deltas and derivative
for (let i = 0; i < n - 1; i++) {
dys[i] = ys[i + 1] - ys[i];
dxs[i] = xs[i + 1] - xs[i];
ds[i] = dys[i] / dxs[i];
}
// determine desired slope (m) at each point using Fritsch-Carlson method
// http://math.stackexchange.com/questions/45218/implementation-of-monotone-cubic-interpolation
ms[0] = ds[0];
for (let i = 1; i < n - 1; i++) {
if (ds[i] === 0 || ds[i - 1] === 0 || (ds[i - 1] > 0) !== (ds[i] > 0))
ms[i] = 0;
else {
ms[i] = 3 * (dxs[i - 1] + dxs[i]) / (
(2 * dxs[i] + dxs[i - 1]) / ds[i - 1] +
(dxs[i] + 2 * dxs[i - 1]) / ds[i]
);
if (!isFinite(ms[i]))
ms[i] = 0;
}
}
ms[n - 1] = ds[n - 2];
for (let i = 0; i < n - 1; i++) {
bezierCurveTo(
path,
xs[i] + dxs[i] / 3,
ys[i] + ms[i] * dxs[i] / 3,
xs[i + 1] - dxs[i] / 3,
ys[i + 1] - ms[i + 1] * dxs[i] / 3,
xs[i + 1],
ys[i + 1],
);
}
}
return path;
}
const cursorPlots = new Set();
function invalidateRects() {
cursorPlots.forEach(u => {
u.syncRect(true);
});
}
on(resize, win, invalidateRects);
on(scroll, win, invalidateRects, true);
const linearPath = linear() ;
const pointsPath = points() ;
function setDefaults(d, xo, yo, initY) {
let d2 = initY ? [d[0], d[1]].concat(d.slice(2)) : [d[0]].concat(d.slice(1));
return d2.map((o, i) => setDefault(o, i, xo, yo));
}
function setDefaults2(d, xyo) {
return d.map((o, i) => i == 0 ? null : assign({}, xyo, o)); // todo: assign() will not merge facet arrays
}
function setDefault(o, i, xo, yo) {
return assign({}, (i == 0 ? xo : yo), o);
}
function snapNumX(self, dataMin, dataMax) {
return dataMin == null ? nullNullTuple : [dataMin, dataMax];
}
const snapTimeX = snapNumX;
// this ensures that non-temporal/numeric y-axes get multiple-snapped padding added above/below
// TODO: also account for incrs when snapping to ensure top of axis gets a tick & value
function snapNumY(self, dataMin, dataMax) {
return dataMin == null ? nullNullTuple : rangeNum(dataMin, dataMax, rangePad, true);
}
function snapLogY(self, dataMin, dataMax, scale) {
return dataMin == null ? nullNullTuple : rangeLog(dataMin, dataMax, self.scales[scale].log, false);
}
const snapLogX = snapLogY;
function snapAsinhY(self, dataMin, dataMax, scale) {
return dataMin == null ? nullNullTuple : rangeAsinh(dataMin, dataMax, self.scales[scale].log, false);
}
const snapAsinhX = snapAsinhY;
// dim is logical (getClientBoundingRect) pixels, not canvas pixels
function findIncr(minVal, maxVal, incrs, dim, minSpace) {
let intDigits = max(numIntDigits(minVal), numIntDigits(maxVal));
let delta = maxVal - minVal;
let incrIdx = closestIdx((minSpace / dim) * delta, incrs);
do {
let foundIncr = incrs[incrIdx];
let foundSpace = dim * foundIncr / delta;
if (foundSpace >= minSpace && intDigits + (foundIncr < 5 ? fixedDec.get(foundIncr) : 0) <= 17)
return [foundIncr, foundSpace];
} while (++incrIdx < incrs.length);
return [0, 0];
}
function pxRatioFont(font) {
let fontSize, fontSizeCss;
font = font.replace(/(\d+)px/, (m, p1) => (fontSize = round((fontSizeCss = +p1) * pxRatio)) + 'px');
return [font, fontSize, fontSizeCss];
}
function syncFontSize(axis) {
if (axis.show) {
[axis.font, axis.labelFont].forEach(f => {
let size = roundDec(f[2] * pxRatio, 1);
f[0] = f[0].replace(/[0-9.]+px/, size + 'px');
f[1] = size;
});
}
}
function uPlot(opts, data, then) {
const self = {
mode: ifNull(opts.mode, 1),
};
const mode = self.mode;
// TODO: cache denoms & mins scale.cache = {r, min, }
function getValPct(val, scale) {
let _val = (
scale.distr == 3 ? log10(val > 0 ? val : scale.clamp(self, val, scale.min, scale.max, scale.key)) :
scale.distr == 4 ? asinh(val, scale.asinh) :
val
);
return (_val - scale._min) / (scale._max - scale._min);
}
function getHPos(val, scale, dim, off) {
let pct = getValPct(val, scale);
return off + dim * (scale.dir == -1 ? (1 - pct) : pct);
}
function getVPos(val, scale, dim, off) {
let pct = getValPct(val, scale);
return off + dim * (scale.dir == -1 ? pct : (1 - pct));
}
function getPos(val, scale, dim, off) {
return scale.ori == 0 ? getHPos(val, scale, dim, off) : getVPos(val, scale, dim, off);
}
self.valToPosH = getHPos;
self.valToPosV = getVPos;
let ready = false;
self.status = 0;
const root = self.root = placeDiv(UPLOT);
if (opts.id != null)
root.id = opts.id;
addClass(root, opts.class);
if (opts.title) {
let title = placeDiv(TITLE, root);
title.textContent = opts.title;
}
const can = placeTag("canvas");
const ctx = self.ctx = can.getContext("2d");
const wrap = placeDiv(WRAP, root);
const under = self.under = placeDiv(UNDER, wrap);
wrap.appendChild(can);
const over = self.over = placeDiv(OVER, wrap);
opts = copy(opts);
const pxAlign = +ifNull(opts.pxAlign, 1);
const pxRound = pxRoundGen(pxAlign);
(opts.plugins || []).forEach(p => {
if (p.opts)
opts = p.opts(self, opts) || opts;
});
const ms = opts.ms || 1e-3;
const series = self.series = mode == 1 ?
setDefaults(opts.series || [], xSeriesOpts, ySeriesOpts, false) :
setDefaults2(opts.series || [null], xySeriesOpts);
const axes = self.axes = setDefaults(opts.axes || [], xAxisOpts, yAxisOpts, true);
const scales = self.scales = {};
const bands = self.bands = opts.bands || [];
bands.forEach(b => {
b.fill = fnOrSelf(b.fill || null);
});
const xScaleKey = mode == 2 ? series[1].facets[0].scale : series[0].scale;
const drawOrderMap = {
axes: drawAxesGrid,
series: drawSeries,
};
const drawOrder = (opts.drawOrder || ["axes", "series"]).map(key => drawOrderMap[key]);
function initScale(scaleKey) {
let sc = scales[scaleKey];
if (sc == null) {
let scaleOpts = (opts.scales || EMPTY_OBJ)[scaleKey] || EMPTY_OBJ;
if (scaleOpts.from != null) {
// ensure parent is initialized
initScale(scaleOpts.from);
// dependent scales inherit
scales[scaleKey] = assign({}, scales[scaleOpts.from], scaleOpts, {key: scaleKey});
}
else {
sc = scales[scaleKey] = assign({}, (scaleKey == xScaleKey ? xScaleOpts : yScaleOpts), scaleOpts);
if (mode == 2)
sc.time = false;
sc.key = scaleKey;
let isTime = sc.time;
let rn = sc.range;
let rangeIsArr = isArr(rn);
if (scaleKey != xScaleKey || mode == 2) {
// if range array has null limits, it should be auto
if (rangeIsArr && (rn[0] == null || rn[1] == null)) {
rn = {
min: rn[0] == null ? autoRangePart : {
mode: 1,
hard: rn[0],
soft: rn[0],
},
max: rn[1] == null ? autoRangePart : {
mode: 1,
hard: rn[1],
soft: rn[1],
},
};
rangeIsArr = false;
}
if (!rangeIsArr && isObj(rn)) {
let cfg = rn;
// this is similar to snapNumY
rn = (self, dataMin, dataMax) => dataMin == null ? nullNullTuple : rangeNum(dataMin, dataMax, cfg);
}
}
sc.range = fnOrSelf(rn || (isTime ? snapTimeX : scaleKey == xScaleKey ?
(sc.distr == 3 ? snapLogX : sc.distr == 4 ? snapAsinhX : snapNumX) :
(sc.distr == 3 ? snapLogY : sc.distr == 4 ? snapAsinhY : snapNumY)
));
sc.auto = fnOrSelf(rangeIsArr ? false : sc.auto);
sc.clamp = fnOrSelf(sc.clamp || clampScale);
// caches for expensive ops like asinh() & log()
sc._min = sc._max = null;
}
}
}
initScale("x");
initScale("y");
// TODO: init scales from facets in mode: 2
if (mode == 1) {
series.forEach(s => {
initScale(s.scale);
});
}
axes.forEach(a => {
initScale(a.scale);
});
for (let k in opts.scales)
initScale(k);
const scaleX = scales[xScaleKey];
const xScaleDistr = scaleX.distr;
let valToPosX, valToPosY;
if (scaleX.ori == 0) {
addClass(root, ORI_HZ);
valToPosX = getHPos;
valToPosY = getVPos;
/*
updOriDims = () => {
xDimCan = plotWid;
xOffCan = plotLft;
yDimCan = plotHgt;
yOffCan = plotTop;
xDimCss = plotWidCss;
xOffCss = plotLftCss;
yDimCss = plotHgtCss;
yOffCss = plotTopCss;
};
*/
}
else {
addClass(root, ORI_VT);
valToPosX = getVPos;
valToPosY = getHPos;
/*
updOriDims = () => {
xDimCan = plotHgt;
xOffCan = plotTop;
yDimCan = plotWid;
yOffCan = plotLft;
xDimCss = plotHgtCss;
xOffCss = plotTopCss;
yDimCss = plotWidCss;
yOffCss = plotLftCss;
};
*/
}
const pendScales = {};
// explicitly-set initial scales
for (let k in scales) {
let sc = scales[k];
if (sc.min != null || sc.max != null) {
pendScales[k] = {min: sc.min, max: sc.max};
sc.min = sc.max = null;
}
}
// self.tz = opts.tz || Intl.DateTimeFormat().resolvedOptions().timeZone;
const _tzDate = (opts.tzDate || (ts => new Date(round(ts / ms))));
const _fmtDate = (opts.fmtDate || fmtDate);
const _timeAxisSplits = (ms == 1 ? timeAxisSplitsMs(_tzDate) : timeAxisSplitsS(_tzDate));
const _timeAxisVals = timeAxisVals(_tzDate, timeAxisStamps((ms == 1 ? _timeAxisStampsMs : _timeAxisStampsS), _fmtDate));
const _timeSeriesVal = timeSeriesVal(_tzDate, timeSeriesStamp(_timeSeriesStamp, _fmtDate));
const activeIdxs = [];
const legend = (self.legend = assign({}, legendOpts, opts.legend));
const showLegend = legend.show;
const markers = legend.markers;
{
legend.idxs = activeIdxs;
markers.width = fnOrSelf(markers.width);
markers.dash = fnOrSelf(markers.dash);
markers.stroke = fnOrSelf(markers.stroke);
markers.fill = fnOrSelf(markers.fill);
}
let legendEl;
let legendRows = [];
let legendCells = [];
let legendCols;
let multiValLegend = false;
let NULL_LEGEND_VALUES = {};
if (legend.live) {
const getMultiVals = series[1] ? series[1].values : null;
multiValLegend = getMultiVals != null;
legendCols = multiValLegend ? getMultiVals(self, 1, 0) : {_: 0};
for (let k in legendCols)
NULL_LEGEND_VALUES[k] = "--";
}
if (showLegend) {
legendEl = placeTag("table", LEGEND, root);
if (multiValLegend) {
let head = placeTag("tr", LEGEND_THEAD, legendEl);
placeTag("th", null, head);
for (var key in legendCols)
placeTag("th", LEGEND_LABEL, head).textContent = key;
}
else {
addClass(legendEl, LEGEND_INLINE);
legend.live && addClass(legendEl, LEGEND_LIVE);
}
}
const son = {show: true};
const soff = {show: false};
function initLegendRow(s, i) {
if (i == 0 && (multiValLegend || !legend.live || mode == 2))
return nullNullTuple;
let cells = [];
let row = placeTag("tr", LEGEND_SERIES, legendEl, legendEl.childNodes[i]);
addClass(row, s.class);
if (!s.show)
addClass(row, OFF);
let label = placeTag("th", null, row);
if (markers.show) {
let indic = placeDiv(LEGEND_MARKER, label);
if (i > 0) {
let width = markers.width(self, i);
if (width)
indic.style.border = width + "px " + markers.dash(self, i) + " " + markers.stroke(self, i);
indic.style.background = markers.fill(self, i);
}
}
let text = placeDiv(LEGEND_LABEL, label);
text.textContent = s.label;
if (i > 0) {
if (!markers.show)
text.style.color = s.width > 0 ? markers.stroke(self, i) : markers.fill(self, i);
onMouse("click", label, e => {
if (cursor._lock)
return;
let seriesIdx = series.indexOf(s);
if ((e.ctrlKey || e.metaKey) != legend.isolate) {
// if any other series is shown, isolate this one. else show all
let isolate = series.some((s, i) => i > 0 && i != seriesIdx && s.show);
series.forEach((s, i) => {
i > 0 && setSeries(i, isolate ? (i == seriesIdx ? son : soff) : son, true, syncOpts.setSeries);
});
}
else
setSeries(seriesIdx, {show: !s.show}, true, syncOpts.setSeries);
});
if (cursorFocus) {
onMouse(mouseenter, label, e => {
if (cursor._lock)
return;
setSeries(series.indexOf(s), FOCUS_TRUE, true, syncOpts.setSeries);
});
}
}
for (var key in legendCols) {
let v = placeTag("td", LEGEND_VALUE, row);
v.textContent = "--";
cells.push(v);
}
return [row, cells];
}
const mouseListeners = new Map();
function onMouse(ev, targ, fn) {
const targListeners = mouseListeners.get(targ) || {};
const listener = cursor.bind[ev](self, targ, fn);
if (listener) {
on(ev, targ, targListeners[ev] = listener);
mouseListeners.set(targ, targListeners);
}
}
function offMouse(ev, targ, fn) {
const targListeners = mouseListeners.get(targ) || {};
for (let k in targListeners) {
if (ev == null || k == ev) {
off(k, targ, targListeners[k]);
delete targListeners[k];
}
}
if (ev == null)
mouseListeners.delete(targ);
}
let fullWidCss = 0;
let fullHgtCss = 0;
let plotWidCss = 0;
let plotHgtCss = 0;
// plot margins to account for axes
let plotLftCss = 0;
let plotTopCss = 0;
let plotLft = 0;
let plotTop = 0;
let plotWid = 0;
let plotHgt = 0;
self.bbox = {};
let shouldSetScales = false;
let shouldSetSize = false;
let shouldConvergeSize = false;
let shouldSetCursor = false;
let shouldSetLegend = false;
function _setSize(width, height, force) {
if (force || (width != self.width || height != self.height))
calcSize(width, height);
resetYSeries(false);
shouldConvergeSize = true;
shouldSetSize = true;
shouldSetCursor = shouldSetLegend = cursor.left >= 0;
commit();
}
function calcSize(width, height) {
// log("calcSize()", arguments);
self.width = fullWidCss = plotWidCss = width;
self.height = fullHgtCss = plotHgtCss = height;
plotLftCss = plotTopCss = 0;
calcPlotRect();
calcAxesRects();
let bb = self.bbox;
plotLft = bb.left = incrRound(plotLftCss * pxRatio, 0.5);
plotTop = bb.top = incrRound(plotTopCss * pxRatio, 0.5);
plotWid = bb.width = incrRound(plotWidCss * pxRatio, 0.5);
plotHgt = bb.height = incrRound(plotHgtCss * pxRatio, 0.5);
// updOriDims();
}
// ensures size calc convergence
const CYCLE_LIMIT = 3;
function convergeSize() {
let converged = false;
let cycleNum = 0;
while (!converged) {
cycleNum++;
let axesConverged = axesCalc(cycleNum);
let paddingConverged = paddingCalc(cycleNum);
converged = cycleNum == CYCLE_LIMIT || (axesConverged && paddingConverged);
if (!converged) {
calcSize(self.width, self.height);
shouldSetSize = true;
}
}
}
function setSize({width, height}) {
_setSize(width, height);
}
self.setSize = setSize;
// accumulate axis offsets, reduce canvas width
function calcPlotRect() {
// easements for edge labels
let hasTopAxis = false;
let hasBtmAxis = false;
let hasRgtAxis = false;
let hasLftAxis = false;
axes.forEach((axis, i) => {
if (axis.show && axis._show) {
let {side, _size} = axis;
let isVt = side % 2;
let labelSize = axis.label != null ? axis.labelSize : 0;
let fullSize = _size + labelSize;
if (fullSize > 0) {
if (isVt) {
plotWidCss -= fullSize;
if (side == 3) {
plotLftCss += fullSize;
hasLftAxis = true;
}
else
hasRgtAxis = true;
}
else {
plotHgtCss -= fullSize;
if (side == 0) {
plotTopCss += fullSize;
hasTopAxis = true;
}
else
hasBtmAxis = true;
}
}
}
});
sidesWithAxes[0] = hasTopAxis;
sidesWithAxes[1] = hasRgtAxis;
sidesWithAxes[2] = hasBtmAxis;
sidesWithAxes[3] = hasLftAxis;
// hz padding
plotWidCss -= _padding[1] + _padding[3];
plotLftCss += _padding[3];
// vt padding
plotHgtCss -= _padding[2] + _padding[0];
plotTopCss += _padding[0];
}
function calcAxesRects() {
// will accum +
let off1 = plotLftCss + plotWidCss;
let off2 = plotTopCss + plotHgtCss;
// will accum -
let off3 = plotLftCss;
let off0 = plotTopCss;
function incrOffset(side, size) {
switch (side) {
case 1: off1 += size; return off1 - size;
case 2: off2 += size; return off2 - size;
case 3: off3 -= size; return off3 + size;
case 0: off0 -= size; return off0 + size;
}
}
axes.forEach((axis, i) => {
if (axis.show && axis._show) {
let side = axis.side;
axis._pos = incrOffset(side, axis._size);
if (axis.label != null)
axis._lpos = incrOffset(side, axis.labelSize);
}
});
}
const cursor = (self.cursor = assign({}, cursorOpts, {drag: {y: mode == 2}}, opts.cursor));
{
cursor.idxs = activeIdxs;
cursor._lock = false;
let points = cursor.points;
points.show = fnOrSelf(points.show);
points.size = fnOrSelf(points.size);
points.stroke = fnOrSelf(points.stroke);
points.width = fnOrSelf(points.width);
points.fill = fnOrSelf(points.fill);
}
const focus = self.focus = assign({}, opts.focus || {alpha: 0.3}, cursor.focus);
const cursorFocus = focus.prox >= 0;
// series-intersection markers
let cursorPts = [null];
function initCursorPt(s, si) {
if (si > 0) {
let pt = cursor.points.show(self, si);
if (pt) {
addClass(pt, CURSOR_PT);
addClass(pt, s.class);
elTrans(pt, -10, -10, plotWidCss, plotHgtCss);
over.insertBefore(pt, cursorPts[si]);
return pt;
}
}
}
function initSeries(s, i) {
if (mode == 1 || i > 0) {
let isTime = mode == 1 && scales[s.scale].time;
let sv = s.value;
s.value = isTime ? (isStr(sv) ? timeSeriesVal(_tzDate, timeSeriesStamp(sv, _fmtDate)) : sv || _timeSeriesVal) : sv || numSeriesVal;
s.label = s.label || (isTime ? timeSeriesLabel : numSeriesLabel);
}
if (i > 0) {
s.width = s.width == null ? 1 : s.width;
s.paths = s.paths || linearPath || retNull;
s.fillTo = fnOrSelf(s.fillTo || seriesFillTo);
s.pxAlign = +ifNull(s.pxAlign, pxAlign);
s.pxRound = pxRoundGen(s.pxAlign);
s.stroke = fnOrSelf(s.stroke || null);
s.fill = fnOrSelf(s.fill || null);
s._stroke = s._fill = s._paths = s._focus = null;
let _ptDia = ptDia(s.width, 1);
let points = s.points = assign({}, {
size: _ptDia,
width: max(1, _ptDia * .2),
stroke: s.stroke,
space: _ptDia * 2,
paths: pointsPath,
_stroke: null,
_fill: null,
}, s.points);
points.show = fnOrSelf(points.show);
points.filter = fnOrSelf(points.filter);
points.fill = fnOrSelf(points.fill);
points.stroke = fnOrSelf(points.stroke);
points.paths = fnOrSelf(points.paths);
points.pxAlign = s.pxAlign;
}
if (showLegend) {
let rowCells = initLegendRow(s, i);
legendRows.splice(i, 0, rowCells[0]);
legendCells.splice(i, 0, rowCells[1]);
legend.values.push(null); // NULL_LEGEND_VALS not yet avil here :(
}
if (cursor.show) {
activeIdxs.splice(i, 0, null);
let pt = initCursorPt(s, i);
pt && cursorPts.splice(i, 0, pt);
}
}
function addSeries(opts, si) {
si = si == null ? series.length : si;
opts = setDefault(opts, si, xSeriesOpts, ySeriesOpts);
series.splice(si, 0, opts);
initSeries(series[si], si);
}
self.addSeries = addSeries;
function delSeries(i) {
series.splice(i, 1);
if (showLegend) {
legend.values.splice(i, 1);
legendCells.splice(i, 1);
let tr = legendRows.splice(i, 1)[0];
offMouse(null, tr.firstChild);
tr.remove();
}
if (cursor.show) {
activeIdxs.splice(i, 1);
cursorPts.length > 1 && cursorPts.splice(i, 1)[0].remove();
}
// TODO: de-init no-longer-needed scales?
}
self.delSeries = delSeries;
const sidesWithAxes = [false, false, false, false];
function initAxis(axis, i) {
axis._show = axis.show;
if (axis.show) {
let isVt = axis.side % 2;
let sc = scales[axis.scale];
// this can occur if all series specify non-default scales
if (sc == null) {
axis.scale = isVt ? series[1].scale : xScaleKey;
sc = scales[axis.scale];
}
// also set defaults for incrs & values based on axis distr
let isTime = sc.time;
axis.size = fnOrSelf(axis.size);
axis.space = fnOrSelf(axis.space);
axis.rotate = fnOrSelf(axis.rotate);
axis.incrs = fnOrSelf(axis.incrs || ( sc.distr == 2 ? wholeIncrs : (isTime ? (ms == 1 ? timeIncrsMs : timeIncrsS) : numIncrs)));
axis.splits = fnOrSelf(axis.splits || (isTime && sc.distr == 1 ? _timeAxisSplits : sc.distr == 3 ? logAxisSplits : sc.distr == 4 ? asinhAxisSplits : numAxisSplits));
axis.stroke = fnOrSelf(axis.stroke);
axis.grid.stroke = fnOrSelf(axis.grid.stroke);
axis.ticks.stroke = fnOrSelf(axis.ticks.stroke);
let av = axis.values;
axis.values = (
// static array of tick values
isArr(av) && !isArr(av[0]) ? fnOrSelf(av) :
// temporal
isTime ? (
// config array of fmtDate string tpls
isArr(av) ?
timeAxisVals(_tzDate, timeAxisStamps(av, _fmtDate)) :
// fmtDate string tpl
isStr(av) ?
timeAxisVal(_tzDate, av) :
av || _timeAxisVals
) : av || numAxisVals
);
axis.filter = fnOrSelf(axis.filter || ( sc.distr >= 3 ? logAxisValsFilt : retArg1));
axis.font = pxRatioFont(axis.font);
axis.labelFont = pxRatioFont(axis.labelFont);
axis._size = axis.size(self, null, i, 0);
axis._space =
axis._rotate =
axis._incrs =
axis._found = // foundIncrSpace
axis._splits =
axis._values = null;
if (axis._size > 0)
sidesWithAxes[i] = true;
axis._el = placeDiv(AXIS, wrap);
// debug
// axis._el.style.background = "#" + Math.floor(Math.random()*16777215).toString(16) + '80';
}
}
function autoPadSide(self, side, sidesWithAxes, cycleNum) {
let [hasTopAxis, hasRgtAxis, hasBtmAxis, hasLftAxis] = sidesWithAxes;
let ori = side % 2;
let size = 0;
if (ori == 0 && (hasLftAxis || hasRgtAxis))
size = (side == 0 && !hasTopAxis || side == 2 && !hasBtmAxis ? round(xAxisOpts.size / 3) : 0);
if (ori == 1 && (hasTopAxis || hasBtmAxis))
size = (side == 1 && !hasRgtAxis || side == 3 && !hasLftAxis ? round(yAxisOpts.size / 2) : 0);
return size;
}
const padding = self.padding = (opts.padding || [autoPadSide,autoPadSide,autoPadSide,autoPadSide]).map(p => fnOrSelf(ifNull(p, autoPadSide)));
const _padding = self._padding = padding.map((p, i) => p(self, i, sidesWithAxes, 0));
let dataLen;
// rendered data window
let i0 = null;
let i1 = null;
const idxs = mode == 1 ? series[0].idxs : null;
let data0 = null;
let viaAutoScaleX = false;
function setData(_data, _resetScales) {
if (mode == 2) {
dataLen = 0;
for (let i = 1; i < series.length; i++)
dataLen += data[i][0].length;
self.data = data = _data;
}
else {
data = (_data || []).slice();
data[0] = data[0] || [];
self.data = data.slice();
data0 = data[0];
dataLen = data0.length;
if (xScaleDistr == 2)
data[0] = data0.map((v, i) => i);
}
self._data = data;
resetYSeries(true);
fire("setData");
if (_resetScales !== false) {
let xsc = scaleX;
if (xsc.auto(self, viaAutoScaleX))
autoScaleX();
else
_setScale(xScaleKey, xsc.min, xsc.max);
shouldSetCursor = cursor.left >= 0;
shouldSetLegend = true;
commit();
}
}
self.setData = setData;
function autoScaleX() {
viaAutoScaleX = true;
let _min, _max;
if (mode == 1) {
if (dataLen > 0) {
i0 = idxs[0] = 0;
i1 = idxs[1] = dataLen - 1;
_min = data[0][i0];
_max = data[0][i1];
if (xScaleDistr == 2) {
_min = i0;
_max = i1;
}
else if (dataLen == 1) {
if (xScaleDistr == 3)
[_min, _max] = rangeLog(_min, _min, scaleX.log, false);
else if (xScaleDistr == 4)
[_min, _max] = rangeAsinh(_min, _min, scaleX.log, false);
else if (scaleX.time)
_max = _min + round(86400 / ms);
else
[_min, _max] = rangeNum(_min, _max, rangePad, true);
}
}
else {
i0 = idxs[0] = _min = null;
i1 = idxs[1] = _max = null;
}
}
_setScale(xScaleKey, _min, _max);
}
let ctxStroke, ctxFill, ctxWidth, ctxDash, ctxJoin, ctxCap, ctxFont, ctxAlign, ctxBaseline;
let ctxAlpha;
function setCtxStyle(stroke = transparent, width, dash = EMPTY_ARR, cap = "butt", fill = transparent, join = "round") {
if (stroke != ctxStroke)
ctx.strokeStyle = ctxStroke = stroke;
if (fill != ctxFill)
ctx.fillStyle = ctxFill = fill;
if (width != ctxWidth)
ctx.lineWidth = ctxWidth = width;
if (join != ctxJoin)
ctx.lineJoin = ctxJoin = join;
if (cap != ctxCap)
ctx.lineCap = ctxCap = cap; // (‿|‿)
if (dash != ctxDash)
ctx.setLineDash(ctxDash = dash);
}
function setFontStyle(font, fill, align, baseline) {
if (fill != ctxFill)
ctx.fillStyle = ctxFill = fill;
if (font != ctxFont)
ctx.font = ctxFont = font;
if (align != ctxAlign)
ctx.textAlign = ctxAlign = align;
if (baseline != ctxBaseline)
ctx.textBaseline = ctxBaseline = baseline;
}
function accScale(wsc, psc, facet, data) {
if (wsc.auto(self, viaAutoScaleX) && (psc == null || psc.min == null)) {
let _i0 = ifNull(i0, 0);
let _i1 = ifNull(i1, data.length - 1);
// only run getMinMax() for invalidated series data, else reuse
let minMax = facet.min == null ? (wsc.distr == 3 ? getMinMaxLog(data, _i0, _i1) : getMinMax(data, _i0, _i1)) : [facet.min, facet.max];
// initial min/max
wsc.min = min(wsc.min, facet.min = minMax[0]);
wsc.max = max(wsc.max, facet.max = minMax[1]);
}
}
function setScales() {
// log("setScales()", arguments);
// wip scales
let wipScales = copy(scales, fastIsObj);
for (let k in wipScales) {
let wsc = wipScales[k];
let psc = pendScales[k];
if (psc != null && psc.min != null) {
assign(wsc, psc);
// explicitly setting the x-scale invalidates everything (acts as redraw)
if (k == xScaleKey)
resetYSeries(true);
}
else if (k != xScaleKey || mode == 2) {
if (dataLen == 0 && wsc.from == null) {
let minMax = wsc.range(self, null, null, k);
wsc.min = minMax[0];
wsc.max = minMax[1];
}
else {
wsc.min = inf;
wsc.max = -inf;
}
}
}
if (dataLen > 0) {
// pre-range y-scales from y series' data values
series.forEach((s, i) => {
if (mode == 1) {
let k = s.scale;
let wsc = wipScales[k];
let psc = pendScales[k];
if (i == 0) {
let minMax = wsc.range(self, wsc.min, wsc.max, k);
wsc.min = minMax[0];
wsc.max = minMax[1];
i0 = closestIdx(wsc.min, data[0]);
i1 = closestIdx(wsc.max, data[0]);
// closest indices can be outside of view
if (data[0][i0] < wsc.min)
i0++;
if (data[0][i1] > wsc.max)
i1--;
s.min = data0[i0];
s.max = data0[i1];
}
else if (s.show && s.auto)
accScale(wsc, psc, s, data[i]);
s.idxs[0] = i0;
s.idxs[1] = i1;
}
else {
if (i > 0) {
if (s.show && s.auto) {
// TODO: only handles, assumes and requires facets[0] / 'x' scale, and facets[1] / 'y' scale
let [ xFacet, yFacet ] = s.facets;
let xScaleKey = xFacet.scale;
let yScaleKey = yFacet.scale;
let [ xData, yData ] = data[i];
accScale(wipScales[xScaleKey], pendScales[xScaleKey], xFacet, xData);
accScale(wipScales[yScaleKey], pendScales[yScaleKey], yFacet, yData);
// temp
s.min = yFacet.min;
s.max = yFacet.max;
}
}
}
});
// range independent scales
for (let k in wipScales) {
let wsc = wipScales[k];
let psc = pendScales[k];
if (wsc.from == null && (psc == null || psc.min == null)) {
let minMax = wsc.range(
self,
wsc.min == inf ? null : wsc.min,
wsc.max == -inf ? null : wsc.max,
k
);
wsc.min = minMax[0];
wsc.max = minMax[1];
}
}
}
// range dependent scales
for (let k in wipScales) {
let wsc = wipScales[k];
if (wsc.from != null) {
let base = wipScales[wsc.from];
if (base.min == null)
wsc.min = wsc.max = null;
else {
let minMax = wsc.range(self, base.min, base.max, k);
wsc.min = minMax[0];
wsc.max = minMax[1];
}
}
}
let changed = {};
let anyChanged = false;
for (let k in wipScales) {
let wsc = wipScales[k];
let sc = scales[k];
if (sc.min != wsc.min || sc.max != wsc.max) {
sc.min = wsc.min;
sc.max = wsc.max;
let distr = sc.distr;
sc._min = distr == 3 ? log10(sc.min) : distr == 4 ? asinh(sc.min, sc.asinh) : sc.min;
sc._max = distr == 3 ? log10(sc.max) : distr == 4 ? asinh(sc.max, sc.asinh) : sc.max;
changed[k] = anyChanged = true;
}
}
if (anyChanged) {
// invalidate paths of all series on changed scales
series.forEach((s, i) => {
if (mode == 2) {
if (i > 0 && changed.y)
s._paths = null;
}
else {
if (changed[s.scale])
s._paths = null;
}
});
for (let k in changed) {
shouldConvergeSize = true;
fire("setScale", k);
}
if (cursor.show)
shouldSetCursor = shouldSetLegend = cursor.left >= 0;
}
for (let k in pendScales)
pendScales[k] = null;
}
// grabs the nearest indices with y data outside of x-scale limits
function getOuterIdxs(ydata) {
let _i0 = clamp(i0 - 1, 0, dataLen - 1);
let _i1 = clamp(i1 + 1, 0, dataLen - 1);
while (ydata[_i0] == null && _i0 > 0)
_i0--;
while (ydata[_i1] == null && _i1 < dataLen - 1)
_i1++;
return [_i0, _i1];
}
function drawSeries() {
if (dataLen > 0) {
series.forEach((s, i) => {
if (i > 0 && s.show && s._paths == null) {
let _idxs = getOuterIdxs(data[i]);
s._paths = s.paths(self, i, _idxs[0], _idxs[1]);
}
});
series.forEach((s, i) => {
if (i > 0 && s.show) {
if (ctxAlpha != s.alpha)
ctx.globalAlpha = ctxAlpha = s.alpha;
{
cacheStrokeFill(i, false);
s._paths && drawPath(i, false);
}
{
cacheStrokeFill(i, true);
let show = s.points.show(self, i, i0, i1);
let idxs = s.points.filter(self, i, show, s._paths ? s._paths.gaps : null);
if (show || idxs) {
s.points._paths = s.points.paths(self, i, i0, i1, idxs);
drawPath(i, true);
}
}
if (ctxAlpha != 1)
ctx.globalAlpha = ctxAlpha = 1;
fire("drawSeries", i);
}
});
}
}
function cacheStrokeFill(si, _points) {
let s = _points ? series[si].points : series[si];
s._stroke = s.stroke(self, si);
s._fill = s.fill(self, si);
}
function drawPath(si, _points) {
let s = _points ? series[si].points : series[si];
let strokeStyle = s._stroke;
let fillStyle = s._fill;
let { stroke, fill, clip: gapsClip, flags } = s._paths;
let boundsClip = null;
let width = roundDec(s.width * pxRatio, 3);
let offset = (width % 2) / 2;
if (_points && fillStyle == null)
fillStyle = width > 0 ? "#fff" : strokeStyle;
let _pxAlign = s.pxAlign == 1;
_pxAlign && ctx.translate(offset, offset);
if (!_points) {
let lft = plotLft,
top = plotTop,
wid = plotWid,
hgt = plotHgt;
let halfWid = width * pxRatio / 2;
if (s.min == 0)
hgt += halfWid;
if (s.max == 0) {
top -= halfWid;
hgt += halfWid;
}
boundsClip = new Path2D();
boundsClip.rect(lft, top, wid, hgt);
}
// the points pathbuilder's gapsClip is its boundsClip, since points dont need gaps clipping, and bounds depend on point size
if (_points)
strokeFill(strokeStyle, width, s.dash, s.cap, fillStyle, stroke, fill, flags, gapsClip);
else
fillStroke(si, strokeStyle, width, s.dash, s.cap, fillStyle, stroke, fill, flags, boundsClip, gapsClip);
_pxAlign && ctx.translate(-offset, -offset);
}
function fillStroke(si, strokeStyle, lineWidth, lineDash, lineCap, fillStyle, strokePath, fillPath, flags, boundsClip, gapsClip) {
let didStrokeFill = false;
// for all bands where this series is the top edge, create upwards clips using the bottom edges
// and apply clips + fill with band fill or dfltFill
bands.forEach((b, bi) => {
// isUpperEdge?
if (b.series[0] == si) {
let lowerEdge = series[b.series[1]];
let lowerData = data[b.series[1]];
let bandClip = (lowerEdge._paths || EMPTY_OBJ).band;
let gapsClip2;
let _fillStyle = null;
// hasLowerEdge?
if (lowerEdge.show && bandClip && hasData(lowerData, i0, i1)) {
_fillStyle = b.fill(self, bi) || fillStyle;
gapsClip2 = lowerEdge._paths.clip;
}
else
bandClip = null;
strokeFill(strokeStyle, lineWidth, lineDash, lineCap, _fillStyle, strokePath, fillPath, flags, boundsClip, gapsClip, gapsClip2, bandClip);
didStrokeFill = true;
}
});
if (!didStrokeFill)
strokeFill(strokeStyle, lineWidth, lineDash, lineCap, fillStyle, strokePath, fillPath, flags, boundsClip, gapsClip);
}
const CLIP_FILL_STROKE = BAND_CLIP_FILL | BAND_CLIP_STROKE;
function strokeFill(strokeStyle, lineWidth, lineDash, lineCap, fillStyle, strokePath, fillPath, flags, boundsClip, gapsClip, gapsClip2, bandClip) {
setCtxStyle(strokeStyle, lineWidth, lineDash, lineCap, fillStyle);
if (boundsClip || gapsClip || bandClip) {
ctx.save();
boundsClip && ctx.clip(boundsClip);
gapsClip && ctx.clip(gapsClip);
}
if (bandClip) {
if ((flags & CLIP_FILL_STROKE) == CLIP_FILL_STROKE) {
ctx.clip(bandClip);
gapsClip2 && ctx.clip(gapsClip2);
doFill(fillStyle, fillPath);
doStroke(strokeStyle, strokePath, lineWidth);
}
else if (flags & BAND_CLIP_STROKE) {
doFill(fillStyle, fillPath);
ctx.clip(bandClip);
doStroke(strokeStyle, strokePath, lineWidth);
}
else if (flags & BAND_CLIP_FILL) {
ctx.save();
ctx.clip(bandClip);
gapsClip2 && ctx.clip(gapsClip2);
doFill(fillStyle, fillPath);
ctx.restore();
doStroke(strokeStyle, strokePath, lineWidth);
}
}
else {
doFill(fillStyle, fillPath);
doStroke(strokeStyle, strokePath, lineWidth);
}
if (boundsClip || gapsClip || bandClip)
ctx.restore();
}
function doStroke(strokeStyle, strokePath, lineWidth) {
if (lineWidth > 0) {
if (strokePath instanceof Map) {
strokePath.forEach((strokePath, strokeStyle) => {
ctx.strokeStyle = ctxStroke = strokeStyle;
ctx.stroke(strokePath);
});
}
else
strokePath != null && strokeStyle && ctx.stroke(strokePath);
}
}
function doFill(fillStyle, fillPath) {
if (fillPath instanceof Map) {
fillPath.forEach((fillPath, fillStyle) => {
ctx.fillStyle = ctxFill = fillStyle;
ctx.fill(fillPath);
});
}
else
fillPath != null && fillStyle && ctx.fill(fillPath);
}
function getIncrSpace(axisIdx, min, max, fullDim) {
let axis = axes[axisIdx];
let incrSpace;
if (fullDim <= 0)
incrSpace = [0, 0];
else {
let minSpace = axis._space = axis.space(self, axisIdx, min, max, fullDim);
let incrs = axis._incrs = axis.incrs(self, axisIdx, min, max, fullDim, minSpace);
incrSpace = findIncr(min, max, incrs, fullDim, minSpace);
}
return (axis._found = incrSpace);
}
function drawOrthoLines(offs, filts, ori, side, pos0, len, width, stroke, dash, cap) {
let offset = (width % 2) / 2;
pxAlign == 1 && ctx.translate(offset, offset);
setCtxStyle(stroke, width, dash, cap, stroke);
ctx.beginPath();
let x0, y0, x1, y1, pos1 = pos0 + (side == 0 || side == 3 ? -len : len);
if (ori == 0) {
y0 = pos0;
y1 = pos1;
}
else {
x0 = pos0;
x1 = pos1;
}
for (let i = 0; i < offs.length; i++) {
if (filts[i] != null) {
if (ori == 0)
x0 = x1 = offs[i];
else
y0 = y1 = offs[i];
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
}
}
ctx.stroke();
pxAlign == 1 && ctx.translate(-offset, -offset);
}
function axesCalc(cycleNum) {
// log("axesCalc()", arguments);
let converged = true;
axes.forEach((axis, i) => {
if (!axis.show)
return;
let scale = scales[axis.scale];
if (scale.min == null) {
if (axis._show) {
converged = false;
axis._show = false;
resetYSeries(false);
}
return;
}
else {
if (!axis._show) {
converged = false;
axis._show = true;
resetYSeries(false);
}
}
let side = axis.side;
let ori = side % 2;
let {min, max} = scale; // // should this toggle them ._show = false
let [_incr, _space] = getIncrSpace(i, min, max, ori == 0 ? plotWidCss : plotHgtCss);
if (_space == 0)
return;
// if we're using index positions, force first tick to match passed index
let forceMin = scale.distr == 2;
let _splits = axis._splits = axis.splits(self, i, min, max, _incr, _space, forceMin);
// tick labels
// BOO this assumes a specific data/series
let splits = scale.distr == 2 ? _splits.map(i => data0[i]) : _splits;
let incr = scale.distr == 2 ? data0[_splits[1]] - data0[_splits[0]] : _incr;
let values = axis._values = axis.values(self, axis.filter(self, splits, i, _space, incr), i, _space, incr);
// rotating of labels only supported on bottom x axis
axis._rotate = side == 2 ? axis.rotate(self, values, i, _space) : 0;
let oldSize = axis._size;
axis._size = ceil(axis.size(self, values, i, cycleNum));
if (oldSize != null && axis._size != oldSize) // ready && ?
converged = false;
});
return converged;
}
function paddingCalc(cycleNum) {
let converged = true;
padding.forEach((p, i) => {
let _p = p(self, i, sidesWithAxes, cycleNum);
if (_p != _padding[i])
converged = false;
_padding[i] = _p;
});
return converged;
}
function drawAxesGrid() {
for (let i = 0; i < axes.length; i++) {
let axis = axes[i];
if (!axis.show || !axis._show)
continue;
let side = axis.side;
let ori = side % 2;
let x, y;
let fillStyle = axis.stroke(self, i);
let shiftDir = side == 0 || side == 3 ? -1 : 1;
// axis label
if (axis.label) {
let shiftAmt = axis.labelGap * shiftDir;
let baseLpos = round((axis._lpos + shiftAmt) * pxRatio);
setFontStyle(axis.labelFont[0], fillStyle, "center", side == 2 ? TOP : BOTTOM);
ctx.save();
if (ori == 1) {
x = y = 0;
ctx.translate(
baseLpos,
round(plotTop + plotHgt / 2),
);
ctx.rotate((side == 3 ? -PI : PI) / 2);
}
else {
x = round(plotLft + plotWid / 2);
y = baseLpos;
}
ctx.fillText(axis.label, x, y);
ctx.restore();
}
let [_incr, _space] = axis._found;
if (_space == 0)
continue;
let scale = scales[axis.scale];
let plotDim = ori == 0 ? plotWid : plotHgt;
let plotOff = ori == 0 ? plotLft : plotTop;
let axisGap = round(axis.gap * pxRatio);
let _splits = axis._splits;
// tick labels
// BOO this assumes a specific data/series
let splits = scale.distr == 2 ? _splits.map(i => data0[i]) : _splits;
let incr = scale.distr == 2 ? data0[_splits[1]] - data0[_splits[0]] : _incr;
let ticks = axis.ticks;
let tickSize = ticks.show ? round(ticks.size * pxRatio) : 0;
// rotating of labels only supported on bottom x axis
let angle = axis._rotate * -PI/180;
let basePos = pxRound(axis._pos * pxRatio);
let shiftAmt = (tickSize + axisGap) * shiftDir;
let finalPos = basePos + shiftAmt;
y = ori == 0 ? finalPos : 0;
x = ori == 1 ? finalPos : 0;
let font = axis.font[0];
let textAlign = axis.align == 1 ? LEFT :
axis.align == 2 ? RIGHT :
angle > 0 ? LEFT :
angle < 0 ? RIGHT :
ori == 0 ? "center" : side == 3 ? RIGHT : LEFT;
let textBaseline = angle ||
ori == 1 ? "middle" : side == 2 ? TOP : BOTTOM;
setFontStyle(font, fillStyle, textAlign, textBaseline);
let lineHeight = axis.font[1] * lineMult;
let canOffs = _splits.map(val => pxRound(getPos(val, scale, plotDim, plotOff)));
let _values = axis._values;
for (let i = 0; i < _values.length; i++) {
let val = _values[i];
if (val != null) {
if (ori == 0)
x = canOffs[i];
else
y = canOffs[i];
val = "" + val;
let _parts = val.indexOf("\n") == -1 ? [val] : val.split(/\n/gm);
for (let j = 0; j < _parts.length; j++) {
let text = _parts[j];
if (angle) {
ctx.save();
ctx.translate(x, y + j * lineHeight); // can this be replaced with position math?
ctx.rotate(angle); // can this be done once?
ctx.fillText(text, 0, 0);
ctx.restore();
}
else
ctx.fillText(text, x, y + j * lineHeight);
}
}
}
// ticks
if (ticks.show) {
drawOrthoLines(
canOffs,
ticks.filter(self, splits, i, _space, incr),
ori,
side,
basePos,
tickSize,
roundDec(ticks.width * pxRatio, 3),
ticks.stroke(self, i),
ticks.dash,
ticks.cap,
);
}
// grid
let grid = axis.grid;
if (grid.show) {
drawOrthoLines(
canOffs,
grid.filter(self, splits, i, _space, incr),
ori,
ori == 0 ? 2 : 1,
ori == 0 ? plotTop : plotLft,
ori == 0 ? plotHgt : plotWid,
roundDec(grid.width * pxRatio, 3),
grid.stroke(self, i),
grid.dash,
grid.cap,
);
}
}
fire("drawAxes");
}
function resetYSeries(minMax) {
// log("resetYSeries()", arguments);
series.forEach((s, i) => {
if (i > 0) {
s._paths = null;
if (minMax) {
if (mode == 1) {
s.min = null;
s.max = null;
}
else {
s.facets.forEach(f => {
f.min = null;
f.max = null;
});
}
}
}
});
}
let queuedCommit = false;
function commit() {
if (!queuedCommit) {
microTask(_commit);
queuedCommit = true;
}
}
function _commit() {
// log("_commit()", arguments);
if (shouldSetScales) {
setScales();
shouldSetScales = false;
}
if (shouldConvergeSize) {
convergeSize();
shouldConvergeSize = false;
}
if (shouldSetSize) {
setStylePx(under, LEFT, plotLftCss);
setStylePx(under, TOP, plotTopCss);
setStylePx(under, WIDTH, plotWidCss);
setStylePx(under, HEIGHT, plotHgtCss);
setStylePx(over, LEFT, plotLftCss);
setStylePx(over, TOP, plotTopCss);
setStylePx(over, WIDTH, plotWidCss);
setStylePx(over, HEIGHT, plotHgtCss);
setStylePx(wrap, WIDTH, fullWidCss);
setStylePx(wrap, HEIGHT, fullHgtCss);
// NOTE: mutating this during print preview in Chrome forces transparent
// canvas pixels to white, even when followed up with clearRect() below
can.width = round(fullWidCss * pxRatio);
can.height = round(fullHgtCss * pxRatio);
axes.forEach(a => {
let { _show, _el, _size, _pos, side } = a;
if (_show) {
let posOffset = (side === 3 || side === 0 ? _size : 0);
let isVt = side % 2 == 1;
setStylePx(_el, isVt ? "left" : "top", _pos - posOffset);
setStylePx(_el, isVt ? "width" : "height", _size);
setStylePx(_el, isVt ? "top" : "left", isVt ? plotTopCss : plotLftCss);
setStylePx(_el, isVt ? "height" : "width", isVt ? plotHgtCss : plotWidCss);
_el && remClass(_el, OFF);
}
else
_el && addClass(_el, OFF);
});
// invalidate ctx style cache
ctxStroke = ctxFill = ctxWidth = ctxJoin = ctxCap = ctxFont = ctxAlign = ctxBaseline = ctxDash = null;
ctxAlpha = 1;
syncRect(false);
fire("setSize");
shouldSetSize = false;
}
if (fullWidCss > 0 && fullHgtCss > 0) {
ctx.clearRect(0, 0, can.width, can.height);
fire("drawClear");
drawOrder.forEach(fn => fn());
fire("draw");
}
// if (shouldSetSelect) {
// TODO: update .u-select metrics (if visible)
// setStylePx(selectDiv, TOP, select.top = 0);
// setStylePx(selectDiv, LEFT, select.left = 0);
// setStylePx(selectDiv, WIDTH, select.width = 0);
// setStylePx(selectDiv, HEIGHT, select.height = 0);
// shouldSetSelect = false;
// }
if (cursor.show && shouldSetCursor) {
updateCursor(null, true, false);
shouldSetCursor = false;
}
// if (FEAT_LEGEND && legend.show && legend.live && shouldSetLegend) {}
if (!ready) {
ready = true;
self.status = 1;
fire("ready");
}
viaAutoScaleX = false;
queuedCommit = false;
}
self.redraw = (rebuildPaths, recalcAxes) => {
shouldConvergeSize = recalcAxes || false;
if (rebuildPaths !== false)
_setScale(xScaleKey, scaleX.min, scaleX.max);
else
commit();
};
// redraw() => setScale('x', scales.x.min, scales.x.max);
// explicit, never re-ranged (is this actually true? for x and y)
function setScale(key, opts) {
let sc = scales[key];
if (sc.from == null) {
if (dataLen == 0) {
let minMax = sc.range(self, opts.min, opts.max, key);
opts.min = minMax[0];
opts.max = minMax[1];
}
if (opts.min > opts.max) {
let _min = opts.min;
opts.min = opts.max;
opts.max = _min;
}
if (dataLen > 1 && opts.min != null && opts.max != null && opts.max - opts.min < 1e-16)
return;
if (key == xScaleKey) {
if (sc.distr == 2 && dataLen > 0) {
opts.min = closestIdx(opts.min, data[0]);
opts.max = closestIdx(opts.max, data[0]);
if (opts.min == opts.max)
opts.max++;
}
}
// log("setScale()", arguments);
pendScales[key] = opts;
shouldSetScales = true;
commit();
}
}
self.setScale = setScale;
// INTERACTION
let xCursor;
let yCursor;
let vCursor;
let hCursor;
// starting position before cursor.move
let rawMouseLeft0;
let rawMouseTop0;
// starting position
let mouseLeft0;
let mouseTop0;
// current position before cursor.move
let rawMouseLeft1;
let rawMouseTop1;
// current position
let mouseLeft1;
let mouseTop1;
let dragging = false;
const drag = cursor.drag;
let dragX = drag.x;
let dragY = drag.y;
if (cursor.show) {
if (cursor.x)
xCursor = placeDiv(CURSOR_X, over);
if (cursor.y)
yCursor = placeDiv(CURSOR_Y, over);
if (scaleX.ori == 0) {
vCursor = xCursor;
hCursor = yCursor;
}
else {
vCursor = yCursor;
hCursor = xCursor;
}
mouseLeft1 = cursor.left;
mouseTop1 = cursor.top;
}
const select = self.select = assign({
show: true,
over: true,
left: 0,
width: 0,
top: 0,
height: 0,
}, opts.select);
const selectDiv = select.show ? placeDiv(SELECT, select.over ? over : under) : null;
function setSelect(opts, _fire) {
if (select.show) {
for (let prop in opts)
setStylePx(selectDiv, prop, select[prop] = opts[prop]);
_fire !== false && fire("setSelect");
}
}
self.setSelect = setSelect;
function toggleDOM(i, onOff) {
let s = series[i];
let label = showLegend ? legendRows[i] : null;
if (s.show)
label && remClass(label, OFF);
else {
label && addClass(label, OFF);
cursorPts.length > 1 && elTrans(cursorPts[i], -10, -10, plotWidCss, plotHgtCss);
}
}
function _setScale(key, min, max) {
setScale(key, {min, max});
}
function setSeries(i, opts, _fire, _pub) {
// log("setSeries()", arguments);
let s = series[i];
if (opts.focus != null)
setFocus(i);
if (opts.show != null) {
s.show = opts.show;
toggleDOM(i, opts.show);
_setScale(mode == 2 ? s.facets[1].scale : s.scale, null, null);
commit();
}
_fire !== false && fire("setSeries", i, opts);
_pub && pubSync("setSeries", self, i, opts);
}
self.setSeries = setSeries;
function setBand(bi, opts) {
assign(bands[bi], opts);
}
function addBand(opts, bi) {
opts.fill = fnOrSelf(opts.fill || null);
bi = bi == null ? bands.length : bi;
bands.splice(bi, 0, opts);
}
function delBand(bi) {
if (bi == null)
bands.length = 0;
else
bands.splice(bi, 1);
}
self.addBand = addBand;
self.setBand = setBand;
self.delBand = delBand;
function setAlpha(i, value) {
series[i].alpha = value;
if (cursor.show && cursorPts[i])
cursorPts[i].style.opacity = value;
if (showLegend && legendRows[i])
legendRows[i].style.opacity = value;
}
// y-distance
let closestDist;
let closestSeries;
let focusedSeries;
const FOCUS_TRUE = {focus: true};
const FOCUS_FALSE = {focus: false};
function setFocus(i) {
if (i != focusedSeries) {
// log("setFocus()", arguments);
let allFocused = i == null;
let _setAlpha = focus.alpha != 1;
series.forEach((s, i2) => {
let isFocused = allFocused || i2 == 0 || i2 == i;
s._focus = allFocused ? null : isFocused;
_setAlpha && setAlpha(i2, isFocused ? 1 : focus.alpha);
});
focusedSeries = i;
_setAlpha && commit();
}
}
if (showLegend && cursorFocus) {
on(mouseleave, legendEl, e => {
if (cursor._lock)
return;
setSeries(null, FOCUS_FALSE, true, syncOpts.setSeries);
updateCursor(null, true, false);
});
}
function posToVal(pos, scale, can) {
let sc = scales[scale];
if (can)
pos = pos / pxRatio - (sc.ori == 1 ? plotTopCss : plotLftCss);
let dim = plotWidCss;
if (sc.ori == 1) {
dim = plotHgtCss;
pos = dim - pos;
}
if (sc.dir == -1)
pos = dim - pos;
let _min = sc._min,
_max = sc._max,
pct = pos / dim;
let sv = _min + (_max - _min) * pct;
let distr = sc.distr;
return (
distr == 3 ? pow(10, sv) :
distr == 4 ? sinh(sv, sc.asinh) :
sv
);
}
function closestIdxFromXpos(pos, can) {
let v = posToVal(pos, xScaleKey, can);
return closestIdx(v, data[0], i0, i1);
}
self.valToIdx = val => closestIdx(val, data[0]);
self.posToIdx = closestIdxFromXpos;
self.posToVal = posToVal;
self.valToPos = (val, scale, can) => (
scales[scale].ori == 0 ?
getHPos(val, scales[scale],
can ? plotWid : plotWidCss,
can ? plotLft : 0,
) :
getVPos(val, scales[scale],
can ? plotHgt : plotHgtCss,
can ? plotTop : 0,
)
);
// defers calling expensive functions
function batch(fn) {
fn(self);
commit();
}
self.batch = batch;
(self.setCursor = (opts, _fire, _pub) => {
mouseLeft1 = opts.left;
mouseTop1 = opts.top;
// assign(cursor, opts);
updateCursor(null, _fire, _pub);
});
function setSelH(off, dim) {
setStylePx(selectDiv, LEFT, select.left = off);
setStylePx(selectDiv, WIDTH, select.width = dim);
}
function setSelV(off, dim) {
setStylePx(selectDiv, TOP, select.top = off);
setStylePx(selectDiv, HEIGHT, select.height = dim);
}
let setSelX = scaleX.ori == 0 ? setSelH : setSelV;
let setSelY = scaleX.ori == 1 ? setSelH : setSelV;
function syncLegend() {
if (showLegend && legend.live) {
for (let i = mode == 2 ? 1 : 0; i < series.length; i++) {
if (i == 0 && multiValLegend)
continue;
let vals = legend.values[i];
let j = 0;
for (let k in vals)
legendCells[i][j++].firstChild.nodeValue = vals[k];
}
}
}
function setLegend(opts, _fire) {
if (opts != null) {
let idx = opts.idx;
legend.idx = idx;
series.forEach((s, sidx) => {
(sidx > 0 || !multiValLegend) && setLegendValues(sidx, idx);
});
}
if (showLegend && legend.live)
syncLegend();
shouldSetLegend = false;
_fire !== false && fire("setLegend");
}
self.setLegend = setLegend;
function setLegendValues(sidx, idx) {
let val;
if (idx == null)
val = NULL_LEGEND_VALUES;
else {
let s = series[sidx];
let src = sidx == 0 && xScaleDistr == 2 ? data0 : data[sidx];
val = multiValLegend ? s.values(self, sidx, idx) : {_: s.value(self, src[idx], sidx, idx)};
}
legend.values[sidx] = val;
}
function updateCursor(src, _fire, _pub) {
// ts == null && log("updateCursor()", arguments);
rawMouseLeft1 = mouseLeft1;
rawMouseTop1 = mouseTop1;
[mouseLeft1, mouseTop1] = cursor.move(self, mouseLeft1, mouseTop1);
if (cursor.show) {
vCursor && elTrans(vCursor, round(mouseLeft1), 0, plotWidCss, plotHgtCss);
hCursor && elTrans(hCursor, 0, round(mouseTop1), plotWidCss, plotHgtCss);
}
let idx;
// when zooming to an x scale range between datapoints the binary search
// for nearest min/max indices results in this condition. cheap hack :D
let noDataInRange = i0 > i1; // works for mode 1 only
closestDist = inf;
// TODO: extract
let xDim = scaleX.ori == 0 ? plotWidCss : plotHgtCss;
let yDim = scaleX.ori == 1 ? plotWidCss : plotHgtCss;
// if cursor hidden, hide points & clear legend vals
if (mouseLeft1 < 0 || dataLen == 0 || noDataInRange) {
idx = null;
for (let i = 0; i < series.length; i++) {
if (i > 0) {
cursorPts.length > 1 && elTrans(cursorPts[i], -10, -10, plotWidCss, plotHgtCss);
}
}
if (cursorFocus)
setSeries(null, FOCUS_TRUE, true, src == null && syncOpts.setSeries);
if (legend.live) {
activeIdxs.fill(null);
shouldSetLegend = true;
for (let i = 0; i < series.length; i++)
legend.values[i] = NULL_LEGEND_VALUES;
}
}
else {
// let pctY = 1 - (y / rect.height);
let mouseXPos, valAtPosX, xPos;
if (mode == 1) {
mouseXPos = scaleX.ori == 0 ? mouseLeft1 : mouseTop1;
valAtPosX = posToVal(mouseXPos, xScaleKey);
idx = closestIdx(valAtPosX, data[0], i0, i1);
xPos = incrRoundUp(valToPosX(data[0][idx], scaleX, xDim, 0), 0.5);
}
for (let i = mode == 2 ? 1 : 0; i < series.length; i++) {
let s = series[i];
let idx1 = activeIdxs[i];
let yVal1 = mode == 1 ? data[i][idx1] : data[i][1][idx1];
let idx2 = cursor.dataIdx(self, i, idx, valAtPosX);
let yVal2 = mode == 1 ? data[i][idx2] : data[i][1][idx2];
shouldSetLegend = shouldSetLegend || yVal2 != yVal1 || idx2 != idx1;
activeIdxs[i] = idx2;
let xPos2 = idx2 == idx ? xPos : incrRoundUp(valToPosX(mode == 1 ? data[0][idx2] : data[i][0][idx2], scaleX, xDim, 0), 0.5);
if (i > 0 && s.show) {
let yPos = yVal2 == null ? -10 : incrRoundUp(valToPosY(yVal2, mode == 1 ? scales[s.scale] : scales[s.facets[1].scale], yDim, 0), 0.5);
if (yPos > 0 && mode == 1) {
let dist = abs(yPos - mouseTop1);
if (dist <= closestDist) {
closestDist = dist;
closestSeries = i;
}
}
let hPos, vPos;
if (scaleX.ori == 0) {
hPos = xPos2;
vPos = yPos;
}
else {
hPos = yPos;
vPos = xPos2;
}
if (shouldSetLegend && cursorPts.length > 1) {
elColor(cursorPts[i], cursor.points.fill(self, i), cursor.points.stroke(self, i));
let ptWid, ptHgt, ptLft, ptTop,
centered = true,
getBBox = cursor.points.bbox;
if (getBBox != null) {
centered = false;
let bbox = getBBox(self, i);
ptLft = bbox.left;
ptTop = bbox.top;
ptWid = bbox.width;
ptHgt = bbox.height;
}
else {
ptLft = hPos;
ptTop = vPos;
ptWid = ptHgt = cursor.points.size(self, i);
}
elSize(cursorPts[i], ptWid, ptHgt, centered);
elTrans(cursorPts[i], ptLft, ptTop, plotWidCss, plotHgtCss);
}
}
if (legend.live) {
if (!shouldSetLegend || i == 0 && multiValLegend)
continue;
setLegendValues(i, idx2);
}
}
}
cursor.idx = idx;
cursor.left = mouseLeft1;
cursor.top = mouseTop1;
if (shouldSetLegend) {
legend.idx = idx;
setLegend();
}
// nit: cursor.drag.setSelect is assumed always true
if (select.show && dragging) {
if (src != null) {
let [xKey, yKey] = syncOpts.scales;
let [matchXKeys, matchYKeys] = syncOpts.match;
let [xKeySrc, yKeySrc] = src.cursor.sync.scales;
// match the dragX/dragY implicitness/explicitness of src
let sdrag = src.cursor.drag;
dragX = sdrag._x;
dragY = sdrag._y;
let { left, top, width, height } = src.select;
let sori = src.scales[xKey].ori;
let sPosToVal = src.posToVal;
let sOff, sDim, sc, a, b;
let matchingX = xKey != null && matchXKeys(xKey, xKeySrc);
let matchingY = yKey != null && matchYKeys(yKey, yKeySrc);
if (matchingX) {
if (sori == 0) {
sOff = left;
sDim = width;
}
else {
sOff = top;
sDim = height;
}
if (dragX) {
sc = scales[xKey];
a = valToPosX(sPosToVal(sOff, xKeySrc), sc, xDim, 0);
b = valToPosX(sPosToVal(sOff + sDim, xKeySrc), sc, xDim, 0);
setSelX(min(a,b), abs(b-a));
}
else
setSelX(0, xDim);
if (!matchingY)
setSelY(0, yDim);
}
if (matchingY) {
if (sori == 1) {
sOff = left;
sDim = width;
}
else {
sOff = top;
sDim = height;
}
if (dragY) {
sc = scales[yKey];
a = valToPosY(sPosToVal(sOff, yKeySrc), sc, yDim, 0);
b = valToPosY(sPosToVal(sOff + sDim, yKeySrc), sc, yDim, 0);
setSelY(min(a,b), abs(b-a));
}
else
setSelY(0, yDim);
if (!matchingX)
setSelX(0, xDim);
}
}
else {
let rawDX = abs(rawMouseLeft1 - rawMouseLeft0);
let rawDY = abs(rawMouseTop1 - rawMouseTop0);
if (scaleX.ori == 1) {
let _rawDX = rawDX;
rawDX = rawDY;
rawDY = _rawDX;
}
dragX = drag.x && rawDX >= drag.dist;
dragY = drag.y && rawDY >= drag.dist;
let uni = drag.uni;
if (uni != null) {
// only calc drag status if they pass the dist thresh
if (dragX && dragY) {
dragX = rawDX >= uni;
dragY = rawDY >= uni;
// force unidirectionality when both are under uni limit
if (!dragX && !dragY) {
if (rawDY > rawDX)
dragY = true;
else
dragX = true;
}
}
}
else if (drag.x && drag.y && (dragX || dragY))
// if omni with no uni then both dragX / dragY should be true if either is true
dragX = dragY = true;
let p0, p1;
if (dragX) {
if (scaleX.ori == 0) {
p0 = mouseLeft0;
p1 = mouseLeft1;
}
else {
p0 = mouseTop0;
p1 = mouseTop1;
}
setSelX(min(p0, p1), abs(p1 - p0));
if (!dragY)
setSelY(0, yDim);
}
if (dragY) {
if (scaleX.ori == 1) {
p0 = mouseLeft0;
p1 = mouseLeft1;
}
else {
p0 = mouseTop0;
p1 = mouseTop1;
}
setSelY(min(p0, p1), abs(p1 - p0));
if (!dragX)
setSelX(0, xDim);
}
// the drag didn't pass the dist requirement
if (!dragX && !dragY) {
setSelX(0, 0);
setSelY(0, 0);
}
}
}
drag._x = dragX;
drag._y = dragY;
if (src == null) {
if (_pub) {
if (syncKey != null) {
let [xSyncKey, ySyncKey] = syncOpts.scales;
syncOpts.values[0] = xSyncKey != null ? posToVal(scaleX.ori == 0 ? mouseLeft1 : mouseTop1, xSyncKey) : null;
syncOpts.values[1] = ySyncKey != null ? posToVal(scaleX.ori == 1 ? mouseLeft1 : mouseTop1, ySyncKey) : null;
}
pubSync(mousemove, self, mouseLeft1, mouseTop1, plotWidCss, plotHgtCss, idx);
}
if (cursorFocus) {
let shouldPub = _pub && syncOpts.setSeries;
let p = focus.prox;
if (focusedSeries == null) {
if (closestDist <= p)
setSeries(closestSeries, FOCUS_TRUE, true, shouldPub);
}
else {
if (closestDist > p)
setSeries(null, FOCUS_TRUE, true, shouldPub);
else if (closestSeries != focusedSeries)
setSeries(closestSeries, FOCUS_TRUE, true, shouldPub);
}
}
}
ready && _fire !== false && fire("setCursor");
}
let rect = null;
function syncRect(defer) {
if (defer === true)
rect = null;
else {
rect = over.getBoundingClientRect();
fire("syncRect", rect);
}
}
function mouseMove(e, src, _l, _t, _w, _h, _i) {
if (cursor._lock)
return;
cacheMouse(e, src, _l, _t, _w, _h, _i, false, e != null);
if (e != null)
updateCursor(null, true, true);
else
updateCursor(src, true, false);
}
function cacheMouse(e, src, _l, _t, _w, _h, _i, initial, snap) {
if (rect == null)
syncRect(false);
if (e != null) {
_l = e.clientX - rect.left;
_t = e.clientY - rect.top;
}
else {
if (_l < 0 || _t < 0) {
mouseLeft1 = -10;
mouseTop1 = -10;
return;
}
let [xKey, yKey] = syncOpts.scales;
let syncOptsSrc = src.cursor.sync;
let [xValSrc, yValSrc] = syncOptsSrc.values;
let [xKeySrc, yKeySrc] = syncOptsSrc.scales;
let [matchXKeys, matchYKeys] = syncOpts.match;
let rotSrc = src.scales[xKeySrc].ori == 1;
let xDim = scaleX.ori == 0 ? plotWidCss : plotHgtCss,
yDim = scaleX.ori == 1 ? plotWidCss : plotHgtCss,
_xDim = rotSrc ? _h : _w,
_yDim = rotSrc ? _w : _h,
_xPos = rotSrc ? _t : _l,
_yPos = rotSrc ? _l : _t;
if (xKeySrc != null)
_l = matchXKeys(xKey, xKeySrc) ? getPos(xValSrc, scales[xKey], xDim, 0) : -10;
else
_l = xDim * (_xPos/_xDim);
if (yKeySrc != null)
_t = matchYKeys(yKey, yKeySrc) ? getPos(yValSrc, scales[yKey], yDim, 0) : -10;
else
_t = yDim * (_yPos/_yDim);
if (scaleX.ori == 1) {
let __l = _l;
_l = _t;
_t = __l;
}
}
if (snap) {
if (_l <= 1 || _l >= plotWidCss - 1)
_l = incrRound(_l, plotWidCss);
if (_t <= 1 || _t >= plotHgtCss - 1)
_t = incrRound(_t, plotHgtCss);
}
if (initial) {
rawMouseLeft0 = _l;
rawMouseTop0 = _t;
[mouseLeft0, mouseTop0] = cursor.move(self, _l, _t);
}
else {
mouseLeft1 = _l;
mouseTop1 = _t;
}
}
function hideSelect() {
setSelect({
width: 0,
height: 0,
}, false);
}
function mouseDown(e, src, _l, _t, _w, _h, _i) {
dragging = true;
dragX = dragY = drag._x = drag._y = false;
cacheMouse(e, src, _l, _t, _w, _h, _i, true, false);
if (e != null) {
onMouse(mouseup, doc, mouseUp);
pubSync(mousedown, self, mouseLeft0, mouseTop0, plotWidCss, plotHgtCss, null);
}
}
function mouseUp(e, src, _l, _t, _w, _h, _i) {
dragging = drag._x = drag._y = false;
cacheMouse(e, src, _l, _t, _w, _h, _i, false, true);
let { left, top, width, height } = select;
let hasSelect = width > 0 || height > 0;
hasSelect && setSelect(select);
if (drag.setScale && hasSelect) {
// if (syncKey != null) {
// dragX = drag.x;
// dragY = drag.y;
// }
let xOff = left,
xDim = width,
yOff = top,
yDim = height;
if (scaleX.ori == 1) {
xOff = top,
xDim = height,
yOff = left,
yDim = width;
}
if (dragX) {
_setScale(xScaleKey,
posToVal(xOff, xScaleKey),
posToVal(xOff + xDim, xScaleKey)
);
}
if (dragY) {
for (let k in scales) {
let sc = scales[k];
if (k != xScaleKey && sc.from == null && sc.min != inf) {
_setScale(k,
posToVal(yOff + yDim, k),
posToVal(yOff, k)
);
}
}
}
hideSelect();
}
else if (cursor.lock) {
cursor._lock = !cursor._lock;
if (!cursor._lock)
updateCursor(null, true, false);
}
if (e != null) {
offMouse(mouseup, doc);
pubSync(mouseup, self, mouseLeft1, mouseTop1, plotWidCss, plotHgtCss, null);
}
}
function mouseLeave(e, src, _l, _t, _w, _h, _i) {
if (!cursor._lock) {
let _dragging = dragging;
if (dragging) {
// handle case when mousemove aren't fired all the way to edges by browser
let snapH = true;
let snapV = true;
let snapProx = 10;
let dragH, dragV;
if (scaleX.ori == 0) {
dragH = dragX;
dragV = dragY;
}
else {
dragH = dragY;
dragV = dragX;
}
if (dragH && dragV) {
// maybe omni corner snap
snapH = mouseLeft1 <= snapProx || mouseLeft1 >= plotWidCss - snapProx;
snapV = mouseTop1 <= snapProx || mouseTop1 >= plotHgtCss - snapProx;
}
if (dragH && snapH)
mouseLeft1 = mouseLeft1 < mouseLeft0 ? 0 : plotWidCss;
if (dragV && snapV)
mouseTop1 = mouseTop1 < mouseTop0 ? 0 : plotHgtCss;
updateCursor(null, true, true);
dragging = false;
}
mouseLeft1 = -10;
mouseTop1 = -10;
// passing a non-null timestamp to force sync/mousemove event
updateCursor(null, true, true);
if (_dragging)
dragging = _dragging;
}
}
function dblClick(e, src, _l, _t, _w, _h, _i) {
autoScaleX();
hideSelect();
if (e != null)
pubSync(dblclick, self, mouseLeft1, mouseTop1, plotWidCss, plotHgtCss, null);
}
function syncPxRatio() {
axes.forEach(syncFontSize);
_setSize(self.width, self.height, true);
}
on(dppxchange, win, syncPxRatio);
// internal pub/sub
const events = {};
events.mousedown = mouseDown;
events.mousemove = mouseMove;
events.mouseup = mouseUp;
events.dblclick = dblClick;
events["setSeries"] = (e, src, idx, opts) => {
setSeries(idx, opts, true, false);
};
if (cursor.show) {
onMouse(mousedown, over, mouseDown);
onMouse(mousemove, over, mouseMove);
onMouse(mouseenter, over, syncRect);
onMouse(mouseleave, over, mouseLeave);
onMouse(dblclick, over, dblClick);
cursorPlots.add(self);
self.syncRect = syncRect;
}
// external on/off
const hooks = self.hooks = opts.hooks || {};
function fire(evName, a1, a2) {
if (evName in hooks) {
hooks[evName].forEach(fn => {
fn.call(null, self, a1, a2);
});
}
}
(opts.plugins || []).forEach(p => {
for (let evName in p.hooks)
hooks[evName] = (hooks[evName] || []).concat(p.hooks[evName]);
});
const syncOpts = assign({
key: null,
setSeries: false,
filters: {
pub: retTrue,
sub: retTrue,
},
scales: [xScaleKey, series[1] ? series[1].scale : null],
match: [retEq, retEq],
values: [null, null],
}, cursor.sync);
(cursor.sync = syncOpts);
const syncKey = syncOpts.key;
const sync = _sync(syncKey);
function pubSync(type, src, x, y, w, h, i) {
if (syncOpts.filters.pub(type, src, x, y, w, h, i))
sync.pub(type, src, x, y, w, h, i);
}
sync.sub(self);
function pub(type, src, x, y, w, h, i) {
if (syncOpts.filters.sub(type, src, x, y, w, h, i))
events[type](null, src, x, y, w, h, i);
}
(self.pub = pub);
function destroy() {
sync.unsub(self);
cursorPlots.delete(self);
mouseListeners.clear();
off(dppxchange, win, syncPxRatio);
root.remove();
fire("destroy");
}
self.destroy = destroy;
function _init() {
fire("init", opts, data);
setData(data || opts.data, false);
if (pendScales[xScaleKey])
setScale(xScaleKey, pendScales[xScaleKey]);
else
autoScaleX();
_setSize(opts.width, opts.height);
updateCursor(null, true, false);
setSelect(select, false);
}
series.forEach(initSeries);
axes.forEach(initAxis);
if (then) {
if (then instanceof HTMLElement) {
then.appendChild(root);
_init();
}
else
then(self, _init);
}
else
_init();
return self;
}
uPlot.assign = assign;
uPlot.fmtNum = fmtNum;
uPlot.rangeNum = rangeNum;
uPlot.rangeLog = rangeLog;
uPlot.rangeAsinh = rangeAsinh;
uPlot.orient = orient;
{
uPlot.join = join;
}
{
uPlot.fmtDate = fmtDate;
uPlot.tzDate = tzDate;
}
{
uPlot.sync = _sync;
}
{
uPlot.addGap = addGap;
uPlot.clipGaps = clipGaps;
let paths = uPlot.paths = {
points,
};
(paths.linear = linear);
(paths.stepped = stepped);
(paths.bars = bars);
(paths.spline = monotoneCubic);
}
export { uPlot as default };